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Modeling and monitoring multilayer attributed weighted directed networks via 
a generative model
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aDepartment of Industrial Engineering, Tsinghua University, Beijing, China; bSchool of Statistics, Southwestern University of Finance and 
Economics, Chengdu, China; cVanke School of Public Health, Tsinghua University, Beijing, China 

ABSTRACT 
As data with network structures are widely seen in diverse applications, the modeling and moni
toring of network data have drawn considerable attention in recent years. When individuals in a 
network have multiple types of interactions, a multilayer network model should be considered to 
better characterize its behavior. Most existing network models have concentrated on characteriz
ing the topological structure among individuals, and important attributes of individuals are largely 
disregarded in existing works. In this article, first, we propose a unified static Network Generative 
Model (static-NGM), which incorporates individual attributes in network topology modeling. The 
proposed model can be utilized for a general multilayer network with weighted and directed 
edges. A variational expectation maximization algorithm is developed to estimate model parame
ters. Second, to characterize the time-dependent property of a network sequence and perform 
network monitoring, we extend the static-NGM model to a sequential version, namely, the 
sequential-NGM model, with the Markov assumption. Last, a sequential-NGM chart is developed to 
detect shifts and identify root causes of shifts in a network sequence. Extensive simulation experi
ments show that considering attributes improves the parameter estimation accuracy and that the 
proposed monitoring method also outperforms the three competitive approaches, static-NGM 
chart, score test-based chart (ST chart) and Bayes factor-based chart (BF chart), in both shift detec
tion and root cause diagnosis. We also perform a case study with Enron E-mail data; the results 
further validate the proposed method.
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1. Introduction

With the rapid development of information science and data 
collection technology, the types and structures of available 
data are becoming increasingly diverse and complex. Rich 
data creates the possibility of identifying relationships 
among various entities in a system and provides a powerful 
ability to describe interactions among these entities. A wide 
range of applications in supply chain, social science, and 
computer science (Kivel€a et al. 2014; Ebrahimi et al. 2021) 
have demonstrated great needs for the modeling and moni
toring of data with network structures. Therefore, the mod
eling and monitoring of network data have drawn much 
attention in recent years.

Early research on data-driven network modeling was usu
ally limited to a single-layer structure, for example, research 
by Motalebi, Stevens and Steiner (2021) and Zhang et al. 
(2021). However, single-layer networks can only describe 
systems with one type of interaction among entities, while it 
is common that multitype interactions occur in a complex 
system. Such a multitype interaction mode reflected in a 
network is a multilayer structure, and each layer represents 
a type of interaction. For example, in a communication 

network, people can communicate by telephone, instant 
message or E-mail, and each communication method could 
be considered one layer of connection between individuals. 
One traditional way to address multilayer networks is to 
aggregate the interactions from different layers and then 
analyze the resulting single-layer networks (De Domenico 
et al., 2013). However, this approach obviously discards con
siderable layer-specific information about multilayer systems. 
Additionally, a multilayer network is not a simple combin
ation of several single-layer networks, and there may be a 
certain correlation between different layers (Nicosia and 
Latora, 2015). Therefore, constructing a model to properly 
describe such multilayer structures is important to analyze 
these systems.

Similar to a single-layer network, a multilayer network also 
has community structures, and edges connecting individuals 
in the network can be weighted and directed (Dong et al., 
2020). As described in Newman and Park (2003), commun
ities are divided into two main types: assortative communities 
and disassortative communities. The individuals in the first 
type of communities interact more densely with the nodes 
within the communities than the individuals outside the com
munities, whereas the other type of communities are 
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contradictory. We take assortative communities into account 
in our work. Moreover, individuals in a network are generally 
sparsely connected; that is, an individual frequently interacts 
with only a few individuals and not the majority. To charac
terize such multilayer weighted and directed networks, Dong 
et al. (2020) proposed a modeling method based on the 
Multivariate Zero-Inflated Poisson (MZIP) distribution and 
Stochastic Block Model (SBM). However, their model may 
suffer from an identifiability issue (Motalebi, Stevens and 
Steiner, 2021), which is illustrated in Appendix C.6.

In addition to the network topology structure formed by 
interactions among individuals, network data sometimes 
contain important attributes of individuals. For example, in 
a network that describes the relationships of all the attorneys 
in a law firm, each node is an attorney whose attributes 
include age, sex, number of years in the profession, and 
school of graduation (Liu et al., 2022). It is common to 
assume that the nodes in the same community generally 
share similar attributes (Chang et al., 2019).

In single-layer network modeling, some researchers have 
simultaneously considered individual attributes and network 
topology to better characterize interactions among individu
als (Farahani et al., 2017; Gahrooei and Paynabar, 2018) or 
to improve the accuracy of community detection (Chang 
et al., 2019; Chunaev, 2020; Liu et al., 2022). Thus, integrat
ing the information of the network structure and individual 
attributes can also assist in the identification of network 
communities, thus improving the accuracy of capturing the 
overall features of a multilayer network and lays a founda
tion for its monitoring, which is of great significance. 
However, to the best of our knowledge, node attributes have 
not been considered in existing works on the modeling of a 
multilayer weighted network with sparse connections. Due 
to the structural complexity of multilayer weighted networks 
and the data heterogeneity of individual attributes and 
multilayer network topology structures, it is difficult to take 
into account individual attributes in multilayer weighted 
network modeling by simply modifying the existing model.

The focus of this article is to construct a unified model 
to describe the Multilayer Attributed Weighted Directed 
Network (MAWDN) and develop a phase-II monitoring 
method to detect shifts in an MAWDN sequence. The con
tribution of this article is threefold. First, we propose a uni
fied static Network Generative Model (static-NGM) based 
on SBM and the Hurdle model, which combines the multi
layer network topology and individual attributes and takes 
into account the community structure through the SBM 
framework and the sparse connection property via the 
Hurdle model. Also, the Hurdle model addresses the identi
fiability of an MZIP model. A Variational Expectation 
Maximization (VEM) algorithm is applied to perform par
ameter estimation and learn the in-control (IC) pattern. 
Second, we extend the static-NGM approach to a sequential 
version (sequential-NGM) with the Markov assumption to 
describe the generative process of an MAWDN sequence to 
characterize the time dependence of the sequence. Third, a 
monitoring scheme named the sequential-NGM chart based 

on sequential-NGM is proposed to monitor anomalies and 
simultaneously identify root causes of anomalies.

The remainder of this article is organized as follows: 
Section 2 reviews existing works about network modeling 
and monitoring. In Section 3, we introduce the method pro
posed to model and monitor MAWDNs in detail. Section 4
verifies the validity of the model and monitoring scheme by 
simulation. A real case study is conducted in Section 5. In 
Section 6, we present a brief conclusion for this study and 
discuss several possible future directions.

2. Literature review

Due to the availability of network-type data in different 
applications, the statistical modeling and monitoring of net
works has drawn much attention in the literature. In fact, 
network modeling and monitoring have a close relationship, 
and we provide a brief review of existing works on them.

The main objective of network monitoring is to detect 
sudden changes in a network sequence, and some reviews 
are available (Savage et al. 2014; Woodall et al. 2017; 
Noorossana et al. 2018; Hewapathirana 2019). Notably, net
work monitoring has a close connection with statistical pro
cess control, and the approaches for it can be divided into 
feature-based and model-based approaches (Stevens et al., 
2021).

Feature-based methods summarize a set of centrality 
measures from a network, such as degree, betweenness, and 
closeness centrality, and monitor them using multi-CUSUM 
or multi-EWMA control charts (McCulloh and Carley, 
2011). These methods also define additional complex fea
tures for a network by scan statistics and use them to moni
tor networks (Priebe et al., 2005). Another idea that belongs 
to this class is the direct monitoring of adjacent matrices or 
tensors using some of their features, such as eigenvalues 
(Hazrati-Marangaloo and Noorossana, 2021). However, such 
methods are not suitable for attributed network monitoring.

Model-based approaches generally utilize a statistical or 
probability model to explain interaction patterns among 
nodes and then use control charts to monitor model param
eters, likelihood, or prediction residuals. The key to these 
approaches is constructing proper models that can closely fit 
the network data.

To describe the attributed networks, one type of model is 
based on the SBM (Chang et al., 2019; Contisciani et al., 
2020; Zhang et al., 2021; Liu et al., 2022), which assumes 
that the individuals in the same community share the same 
interaction pattern and similar attributes. However, these 
models are mostly employed in community detection, but 
not network monitoring, and edges in networks are gener
ally unweighted.

The other type of model is based on Generalized Linear 
Models (GLMs). These models link the edge distribution 
between two individuals with their attributes via GLMs, and 
Poisson regression and Bernoulli regression can be utilized 
in integer weighted networks and unweighted networks 
(Azarnoush et al., 2016; Farahani et al., 2017; Gahrooei and 
Paynabar, 2018). Considering the sparsity property of 
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weighted networks, the edge weight distribution between 
two individuals can be replaced with a Zero-inflated Poisson 
(ZIP) distribution (Motalebi Owlia, Amiri, and 
Fallahnezhad, 2023) or a Hurdle model (Ebrahimi et al., 
2021). To characterize the naturally time-evolution of a net
work stream in the context of network monitoring, 
Gahrooei and Paynabar (2018) and Ebrahimi et al. (2021) 
used a state space model on the regression coefficients of 
GLMs and monitored the network stream via one-step pre
diction residuals. Differently, Azarnoush et al. (2016) con
sidered a dynamic-reference sliding window approach and 
performed monitoring via the likelihood ratio test. However, 
this type of model cannot be easily applied in the field of 
multilayer network modeling and monitoring.

Latent space models are another type of method to model 
network systems; they map the individuals of the network 
into a low-dimensional real space and represent them 
through some real scalars or vectors (Zou and Li, 2017; Sun 
et al., 2020; Wang and Xie, 2021; Lee et al., 2022). However, 
these models cannot be applied to model a weighted attrib
uted network, especially a multilayer network.

Recall that one key feature of networks that we consider 
is that they have multiple layers. Kivel€a et al. (2014) pro
vided a detailed description of the history of multilayer net
works and some terminologies. Han et al. (2015) and Paul 
and Chen (2016) constructed models based on the SBM to 
characterize multilayer networks with binary edges. The 
model of Contisciani et al. (2020) is similar, but considers 
individual attributes. To address weighted edges, De Bacco 
et al. (2017) further applied a Poisson distribution to model 
edge weight, and the basis of this model is the mixed mem
bership SBM. Dong et al. (2020) noted that multilayer net
works are sparse and emphasized that some correlations 
exist between different layers. Thus, the authors proposed an 
SBM based on Multivariate Zero Inflated Poisson 
Distribution (MZIP-SBM) to describe a multilayer network 
and constructed a control chart using score statistics to test 
whether a multilayer network is generated from the model 
with IC parameters by MZIP-SBM, however, they assumed 
that community labels are known as prior knowledge.

Although there are a lot of methods to model network 
systems and monitoring a network sequence based on the 
model, methods for modeling MANWDN and characteriz
ing the time-dependent property of a multilayer network are 
still lacking. Therefore, methods for monitoring a MAWDN 
sequence and identifying the key factor that leads to a sud
den change are also lacking. To address these issues, we pro
pose a unified generative model to integrate both the 
network topology and attributes and extend it to a sequen
tial version to model a network sequence. Then, the sequen
tial-NGM chart scheme is proposed to simultaneously detect 
changes and identify the root causes of changes.

3. Methodology

In this section, first, we introduce the MAWDN representa
tion. Second, we propose a static-NGM model to model an 
MAWDN and develop a VEM algorithm to estimate the IC 

parameters offline. Third, we introduce a sequential version 
of static-NGM, i.e., sequential-NGM, to model an MAWDN 
sequence and introduce the monitoring and diagnosis 
scheme based on this model. Last, we provide important 
remarks on model implementation.

3.1. MAWDN representation

We extend the representation provided in Dong et al. 
(2020). Systematically, we refer to individuals in a network 
as nodes hereafter. We consider an MAWDN G ¼
fV, E,Wg with L layers, where V ¼ fvigi¼1, :::, N is a node set 
consisting of N nodes present at each layer of the network, 
W ¼ fW1, :::,WNg is the attribute set for all the nodes in 
the network, with W i representing all the attributes pos
sessed by node i, and E ¼ fE1, :::, ELg represents an edge set 
consisting of all directed edges in the network, with El con
sisting of all the edges at layer l.

For an MAWDN, we have its adjacent tensor A and 
attribute matrix W. A is in dimension N � N � L, whose 
element nijl represents the number of interactions from node 
i to node j at layer l, and thus is integer-valued. Loops are 
not allowed in the context of this article. W is in dimension 
N � T, whose element wit is binary, and wit ¼ 1 represents 
node i possessing attribute t, while wit ¼ 0, otherwise.

It is true that some attributes are not binary, even not 
discrete, but we can discretize them first and transform 
them into binary variables (Liu et al., 2022). Hence, we only 
consider binary attribute in this work. We use an MAWDN 
with two layers, 15 nodes and 18 node attributes as an 
example. In this network, community 1 is strongly related to 
attributes 1–6, community 2 is strongly related to attributes 
7–12 and community 3 is strongly related to the remaining 
6 attributes. Figure 1(a) provides the topology of this net
work, the darker edge represents the greater edge weight, 
and Figure 1(b) is its node attribute matrix, the shaded pos
ition represents a 1 and the blank position represents a 0.

3.2. Static-NGM model and offline learning

In this section, we propose a static MAWDN generative 
model to describe the IC pattern. In the proposed model, 
we follow the idea of a SBM and assume that the nodes in 
one network can be partitioned into R communities, and 
that communities are disjoint with each other, we assume R 
is known in this work. For each node i, a categorical vari
able ci 2 f1, :::, Rg represents its community ID, ci ¼ r if 
node i belongs to community r. We follow the assumption 
proposed by Dong et al. (2020) that all network layers share 
the same community structure.

Moreover, we only consider the attributes that are highly 
related to communities and network independent. Selecting 
the coauthor network constructed by Pandhre et al. (2016) 
as an example, nodes represent authors, and an undirected 
edge exists between two nodes if the two authors repre
sented by the two nodes are coauthors of an article. The 
attributes for a node is a vector that records the number of 
papers published in 20 different journals or conferences. 

IISE TRANSACTIONS 3



Intuitively, we treat different research fields as different 
communities. Generally, authors in different communities 
select different journals or conferences to publish their 
works, whereas authors in the same communities have simi
lar selections. Thus, the attributes in the coauthor network 
are highly related to communities. On the other hand, since 
the main journals and conferences in each research field are 
relatively fixed, the attribute distribution in different net
works are considered the same, i.e., network independence. 
We further explain network independence in Section 3.2.1.

3.2.1. Model formulation
We consider a set of MAWDNs fGg , g ¼ 1, :::, Gg: Given an 
index g, g 2 f1, :::, Gg, MAWDN Gg consists of N nodes, and 
we have its adjacent tensor Ag and attribute matrix Wg : We 
here model the generation process of Ag and Wg : Following 
the common assumptions of SBM models, we believe that the 
interaction behaviors among nodes and the attribute distribu
tions of nodes both only depend on their latent community ID. 
For each MAWDN Gg , we use a vector cg with dimension R to 
define a multinomial distribution that describes the community 
distribution of its nodes. For each pair of community ðr, sÞ 2
f1, :::, Rg2, we use pg

rs and hg
rs to define a Hurdle model, which 

can characterize the sparsity property, to describe the distribu
tion of total edge number from a node in community r to a 
node in community s. Here, pg

rs is the probability that the edge 
weight from a node in community r to a node in community s 
is deterministically set to zero, and hg

rs defines a positive Poisson 
distribution to describe the total edge number if it is greater 
than zero. The probability mass function of the Hurdle model is 
given by Equation (5).

We use a vector ug
rs with dimension L to define a multi

nomial distribution that describes the probability of a layer 
to which an edge from a node in community r to a node in 
community s in MAWDN g belongs. Meanwhile, for each 
community r 2 f1, :::, Rg, we use a vector lr with dimen
sion T to define a multinomial distribution to describe its 
attribute distribution. Please note that in a mathematical 

view, network independent attribute distribution assumption 
is equivalent to that lr is independent of networks indices g.

Based on the definitions above, the MAWDN set 
fGg , g ¼ 1, :::, Gg generation process in the static-NGM 
model is shown below, and Figure 2 is the corresponding 
graphical representation.

� For each community r 2 f1, 2, :::, Rg :

– Draw a multinomial attribute distribution with param
eter vector lr � Dirichlet ðgrÞ:

� For each network Gg:
– Draw a multinomial community distribution with par

ameter cg � DirichletðaÞ
� For each pair of community (r, s):

– Draw a Hurdle parameter pg
rs � Beta ðmrs, 1, mrs, 2Þ

– Draw a Hurdle parameter hg
rs � Gamma ðnrs, 1, nrs, 2Þ

– Draw a multinomial edge layer distribution with par
ameter vector ug

rs � DirichletðxrsÞ

� For each node i in the network Gg:
– Draw a community ID cg

i � multinomialðcgÞ

� For each attribute:
– Draw a value t � multinomialðlcg

i
Þ

Figure 1. Illustration example of MAWDN. (a) The topology of the MAWDN, darker edges means greater edge weights. (b) The node attribute matrix of the 
MAWDN, each shaded cells represents a “1” and an empty cells represents a “0”.

Figure 2. Graphical representation of static-NGM model.

4 H. WU ET AL.



� For each pair of nodes ði, jÞ, i 6¼ j :

– Draw a value from Bernoulli ðpg
cg

i , cg
j
Þ to indicate 

whether ng
ij > 0

– if ng
ij > 0, draw the total number of edges ng

ij �

Positive Poissonðhg
cg

i , cg
j
Þ from node i to node j

– if ng
ij > 0, for each edge eg

ij, k, k ¼ 1, :::, ng
ij :

– draw a layer eg
ij, k � multinomialðug

cg
i , cg

j
Þ

This model mainly includes two blocks, namely, an attri
bute generation block (shown in rectangle with green shade 
and dash-line sides in Figure 2) and a topology generation 
block (shown in rectangle with blue shade and dot-and- 
dash-line sides in Figure 2). Using this model, we integrate 
the network node attributes and network topology, and 
depict the complex MAWDN data through a set of model 
parameters b1 ¼ fc, l, H, P, ug, where l ¼

flrgr¼1, :::, R, H ¼ fhrsgr, s¼1, :::, R, P ¼ fprsgr, s¼1, :::, R and u ¼

fugr, s¼1, :::, R: We propose a VEM algorithm to estimate 
these model parameters in Section 3.2.2, b2 ¼ fa, m, n, x, gg
are hyperparameters that can be set according to some prior 
information (see Appendix C for detailed guidelines).

3.2.2. Parameter estimation
We denote that A ¼ fAggg¼1, :::, G, W ¼ fWggg¼1, :::, G and 
that c ¼ fcggg¼1, :::, G, where cg ¼ ½cg

1, cg
2, :::, cg

N �, let Ig
i ðrÞ ¼

Iðcg
i ¼ rÞ ¼ 1 if cg

i ¼ r and Ig
i ðrÞ ¼ 0 otherwise. Based on 

the description above, we need to estimate the model 
parameters b1 given the MAWDN data and hyperpara
meters b2 and to infer the community ID of each node in 
each network. The likelihood function corresponding to the 
proposed model is

PðA, Wjb1Þ ¼
X

c
PðA, W, cjb1Þ

¼
X

c
PðAjc, P, H, uÞPðWjc, lÞPðcjcÞ (1) 

Where

PðAjc, P, H, uÞ ¼
YG

g¼1

Y

i6¼j

Y

r, s

YL

l¼1

P ng
ij, lju

g
rs , ng

ij

� �
P ng

ijjp
g
rs , hg

rs

� �� �Ig
i ðrÞI

g
j ðsÞ

(2) 

PðWjc, lÞ ¼
YG

g¼1

YN

i¼1

YR

r¼1

YT

t¼1
Pðwg

itjlrÞ
Ig

i ðrÞ

¼
YG

g¼1

YN

i¼1

YR

r¼1

YT

t¼1
ðlrtÞ

Ig
i ðrÞw

g
it (3) 

P ng
ijjp

g
rs, h

g
rs

� �
¼

p
g
rs if ng

ij ¼ 0

ð1 − p
g
rsÞ
ðhg

rsÞ
ng

ij exp −hg
rs

� �

ng
ij! 1 − exp −hg

rs
� �� � if ng

ij > 0

8
>><

>>:

(4) 

PðcjcÞ ¼
YG

g¼1

YN

i¼1
Pðcg

i jc
gÞ ¼

YG

g¼1

YN

i¼1

YR

r¼1
ðcg

r Þ
Ig

i ðrÞ (5) 

We perform estimation and inference under a Bayesian 
framework. The key problem we need to address is comput
ing the joint posterior distribution of c and b1 given the 
observation MAWDN data and prior distributions, that is

Pðb1, cjA, W, b2Þ ¼
Pðb1, c,A, Wjb2ÞP

c
Ð

b1
Pðc,A, Wjb1ÞPðb1jb2Þdb1

(6) 

Because the integration in the denominator of the right- 
hand of Equation (6) is in high complexity, obtaining a 
closed-form expression for this posterior distribution is 
intractable. Hence, we propose a VEM algorithm to find a 
variational distribution Qðb1, cÞ with an easy form to 
approximate Pðb1, cjA, W, b2Þ: The objective is minimizing 
the Kullback–Leiber (KL) divergence (Kullback, 1997) 
between Qðb1, cÞ and Pðb1, cjA, W, b2Þ, that is,

Q�ðb1, cÞ ¼ arg min
Q2F

DKLðQðb1, cÞjjPðb1, cjA, W, b2ÞÞ (7) 

where F is a given variational distribution family.
In our work, we consider a mean field distribution fam

ily, i.e., all the distributions are independent of each other, 
then Qðb1, cÞ has a form:

Qðb1, cÞ ¼
YR

r¼1
qðlrjd

l
rÞ
YG

g¼1
qðcg jmgÞ

YN

i¼1
qðcg

i js
g
i Þ
Y

r, s
qðpg

rsjd
pg
rs Þ

qðhg
rsjd

hg
rs Þqðu

g
rsjd

ug
rs Þ

(8) 

where b3 ¼ fm, s, dl, dp, dh, dug is the variational parameter 
set. Additionally, we restrict the form of each variational dis
tribution as (9):

qðcg jmgÞ ¼ DirichletðmgÞ; qðcg
i js

g
i Þ ¼ multinomialðsg

i Þ

qðlrjd
l
r Þ ¼ Dirichletðdl

r Þ; qðpg
rsjd

pg
rs Þ ¼ Betaðdpg

rs, 1, dpg
rs, 2Þ;

qðhg
rsjd

hg
rs Þ ¼ Gammaðdhg

rs, 1, dhg
rs, 2Þ; qðug

rsjd
ug
rs Þ ¼ Dirichletðdug

rs Þ

(9) 

By Jensen’s inequality, we can obtain the lower bound of 
the log-likelihood function under Bayesian framework, 
which is always named as Evidence Lower Bound (ELBO):

log PðA, Wjb2Þ � EQ log Pðb1, c, A, Wjb2
� �

− EQ log Qðb1, cÞ
� �

¢ELBOðb3Þ (10) 

By Equations (7) and (10), we can obtain the relationship 
among the log-likelihood function, KL-divergence between 
Qðb1, cÞ and Pðb1, cjA, W, b2Þ, and ELBO:

log PðA, Wjb2Þ − ELBOðb3Þ ¼ DKLðQðb1, cÞjjPðb1, cjA, W, b2ÞÞ

(11) 

which indicates that minimizing KL-divergence is equivalent 
to maximizing ELBO given prior distributions and observed 
MAWDN data. Therefore, we here optimize variational 
parameters by maximizing the ELBO. To achieve this, 
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we split b3 into b31 ¼ fsg and b32 ¼ fm, dl, dp, dh, dug, and 
adopt an iterative procedure shown in Equation (12) to 
update these two set of parameters until it converges

b
ðrþ1Þ
31 ¼ argmaxb31 ELBOðb31, bðrÞ32 Þ

b
ðrþ1Þ
32 ¼ argmaxb32 ELBOðbðrþ1Þ

31 , b32Þ

(

(12) 

After some derivation, we can obtain the update formula 
for each component in b3: Given b32, the optimal s meets 
the fixed point relation (13):

s
g
ir / exp

(
X

j6¼i

XR

r¼1
s

g
js Trs

ij ðgÞ þ Tsr
ji ðgÞ

� �
þ wg

it

XT

t¼1
EQ log lrt½ �

þ EQ log cg
r

� �
)

(13) 

Thus, we can get optimal s by iterating the relation above 
until convergence. Define indicator function Iðng

ij ¼ 0Þ ¼ 1 
if ng

ij ¼ 0 and Iðng
ij ¼ 0Þ ¼ 0, otherwise. For simplicity, we 

denote Iðng
ij ¼ 0Þ as I¼hij and let I 6¼gij ¼ 1 − I¼hij: Then, given s, 

the optimal value for elements in b32 are:

�g
r ¼

XN

i¼1
s

g
ir þ ar; d

l
rt ¼

XG

g¼1

XN

i¼1
s

g
irw

g
it þ grt (14a) 

d
pg
rs, 1 ¼

XN

i¼1

XN

j¼1, j6¼i
s

g
irs

g
jsI
¼
gij þmrs, 1;

d
pg
rs, 2 ¼

XN

i¼1

XN

j¼1, j6¼i
s

g
irs

g
jsI
6¼
gij þmrs, 2

(14b) 

dhg
rs
� ¼ arg max

d
hg
rs

Lðdhg
rs Þ; d

ug
rs, l ¼

XN

i¼1

XN

j¼1, j6¼i
s

g
irs

g
jsI
6¼
gijn

g
ij, l þ xrs, l

(14c) 

We then use means of variational posterior distributions 
as point estimations of model parameters:

ĉg
r ¼

�
g
r

PR
r¼1�

g
r

, l̂rt ¼
d

l
rt

PT
h¼1d

l
rt

, p̂g
rs ¼

d
pg
rs, 2

d
pg
rs, 1 þ d

pg
rs, 2

ĥ
g
rs ¼

d
hg
rs, 1

d
hg
rs, 2

, ûg
rs, l ¼

d
ug
rs, l

PL
l¼1d

ug
rs, l

(15) 

We summarize this algorithm in Algorithm 1 in 
Appendix E.2. More details about the derivation process and 
the closed-form expressions of expectations are provided in 
Appendix A. We can observe that the s “softly” estimates 
the community ID of each node, and the optimal values of 
the other variational parameters totally depend on the opti
mal value of s: “Softly” means that the s provides the distri
bution of community ID of each node, but does not give 
the exact community to which each node belongs. 
Therefore, the more accurate the community estimation is, 
the more accurate the model parameter estimation is. In 
other words, if a node i belongs to community r, it is better 
to get the result that sir � 1 and sis � 0, s 6¼ r: Thus, the 

structure of our model and parameter estimation process 
also indicate the network community detection using net
work topology and node attributes. However, these two 
absolutely different types of data can bring different infor
mation gains to community detection and the two corre
sponding terms in the likelihood function can be on 
different scales. To better balance the contributions of the 
two types of data and improve the accuracy of community 
detection, we consider using weight likelihood function 
(Liang and Wang, 2022) to replace the original likelihood 
function (1) by introducing a weight factor r.

PðA, Wjb1Þ ¼
X

c
PðA, W, cjb1Þ

¼
X

c
PðAjc, P, H, uÞPðWjc, lÞ

rPðcjcÞ (16) 

Using the almost same derivation process, we get the new 
update formula for s and dl

s
g
ir / exp

(
X

j6¼i

XR

r¼1
s

g
js Trs

ij ðgÞ þ Tsr
ji ðgÞ

� �

þ rwg
it

XT

t¼1
EQ log lrt½ � þ EQ log cg

r
� �

)

(17) 

d
l
rt ¼ r

XG

g¼1

XN

i¼1
s

g
irw

g
it þ grt (18) 

The update formulas for the other variational parameters 
remain unchanged. r is the weight coefficient of node attrib
utes relative to network topology, r¼ 0 means ignoring the 
information in node attributes, r!1 means using infor
mation in node attributes only. We provide a guideline to 
select a proper r in Appendix C.1.

We note that all the optimal variational parameters 
related to the Beta distribution and Dirichlet distribution 
can be viewed as the sum of the prior pseudo count and the 
real count in MAWDN, for instance, �g

r is the sum of the 
prior pseudo count of nodes in community r and real num
ber of nodes belonging to community r in MAWDN g. Such 
findings make our model more explanatory and valid. 
Another note is that, by estimating the attribute distribution 
lr for community r 2 f1, :::, Rg, we want to identify the 
attributes that the community r is strongly dependent 
(Chang et al., 2019; Liu et al., 2022) with, namely, the attrib
utes with a larger lrt. Consequently, we are not particularly 
bothered about the exact value of lrt because it does not 
affect the estimated value of the other parameters, but rather 
focus on the attributes with relatively large lrt, which can 
help us to efficiently infer the node community, so as to 
accurately estimate the model parameters.

3.3. Sequential-NGM model and online monitoring

In this stage, the IC parameters cð0Þ, Pð0Þ, Hð0Þ, and uð0Þ, are 
known. Also, the attribute distribution l for each commu
nity is known. They can be estimated offline from IC 
MAWDNs using static-NGM model in Section 3.2. 
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We further assume that l does not change over the observa
tion time. This assumption is reasonable, due to the network 
independent property of node attributes. Even if there is a 
shift of l, we can treat it as the appearance of new com
munities, which is do not considered in this work. To realize 
the aim of monitoring an MAWDN sequence online, we 
extend the static-NGM model to its sequential version 
(sequential-NGM) to describe the sequential generative pro
cess of an MAWDN sequence. Through estimating and 
monitoring the model parameters at each observation time, 
we can control the network sequence.

3.3.1. Model formulation
We define a sequence of MAWDNs Gg , g ¼ 1, 2, :::, G, where 
Gg is the observed MAWDN at time g, represented by its 
adjacent tensor Ag and attribute matrix Wg : To model the 
time dependent property of the network sequence, we 
include the Markov assumption in the sequential-NGM 
model, i.e., the prior distributions of model parameters 
u, c, P and H at time g only depend on those at time g – 1. 
Specifically, the model parameters at time 1 are generated 
from the prior distribution defined by the target parameters 
cð0Þ, Pð0Þ, Hð0Þ and uð0Þ: The sequential generative process of 
MAWDN sequence Gg , g ¼ 1, 2, :::, G is described as below 
(see Figure 3 for its graphical representation):

� For each network Gg :

– Draw a multinomial community distribution with par
ameter vector cg � DirichletðqNcg−1Þ

� For each pair of community (r, s):
– Draw a parameter p

g
rs � Beta(.qNðN − 1Þ

c
g−1
r c

g−1
s p

g−1
rs , qNðN − 1Þcg−1

r c
g−1
s ð1 − p

g−1
rs )).

– Draw a parameter hg
rs � Gamma(.qNðN − 1Þ

c
g−1
r c

g−1
s ð1 − p

g−1
rs Þh

g−1
rs , qNðN − 1Þcg−1

r c
g−1
s ð1 − p

g−1
rs Þ).

– Draw a multinomial edge layer distribution with par
ameter vector

u
g
rs � Dirichlet ðqNðN − 1Þcg−1

r c
g−1
s ð1 − p

g−1
rs Þh

g−1
rs u

g−1
rs Þ

� For each node i in the network Gg :

– Draw a community ID cg
i � multinomialðcgÞ

– for each attribute of node i:

�Draw a value t � Dirichlet(lcg
i
)

� For each pair of nodes (i, j):
– Draw a value from Bernoulli ðpg

cg
i , cg

j
Þ to indicate 

whether ng
ij > 0

– if ng
ij > 0, Draw the total number of edges ng

ij �

Positive Poissonðhg
cg

i , cj
Þ from node i to node j

– if ng
ij > 0, for each edge eg

ij, k :

�Draw a layer eg
ij, k � multinomialðug

cg
i , cg

j
Þ

where q is a smoothing factor that adjust the influence of 
the prior. A larger q means a stronger influence of the last 
network on the present network. See Appendix C.1 for the 
discussion of selecting q.

According to the above model structure, given the 
parameters at time g – 1 and the MAWDN representation 
fAg , Wgg, we can estimate the parameter at time g.

3.3.2. Parameter estimation
We use the VEM algorithm as we do in Section 3.2.2 to per
form parameter estimation. The variational distribution at 
time g is

Qgðcg , Pg , Hg , ug , cÞ ¼ qðcg jmgÞ
YN

i¼1
qðcg

i js
g
i Þ
Y

r, s
qðpg

rsjd
pg
rs Þ

qðhg
rsjd

hg
rs Þqðu

g
rsjd

ug
rs Þ

(19) 

Note that l is known, we do not include the terms 
related to it in Qg. By some similar derivation to it in 
Appendix A, we obtain the update formula for each vari
ational parameter.

We also use the mean of the variational distributions as 
the estimation results of model parameters:

ĉg
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Figure 3. Graphical representation of sequential-NGM model.
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In Equation (20), we notice that the estimation results of 
cg , Pg and ug can be approximately viewed as in a EWMA 
type, where 1

1þq 
is equivalent to k in EWMA.

3.3.3. Monitoring and root cause diagnosis scheme
The main objective of MAWDN monitoring and diagnosis 
is detecting the sudden change of an MAWDN sequence 
and diagnosing the root cause of it. To achieve this object
ive, we propose a four-chart control scheme and name it as 
the sequential-NGM chart.

Considering the fact that the feature of an MAWDN can 
be reflected by the model parameters b ¼ fc, P, H, ug, we 
can conduct the following hypothesis test to check whether 
there is a shift at time g:

H0 : bg ¼ bð0Þ; H1 : bg 6¼ bð0Þ (21) 

where bg ¼ fc
g ,Pg ,Hg ,ugg and bð0Þ ¼ fcð0Þ,Pð0Þ,Hð0Þ,uð0Þg:

One note is that the networks may slowly evolve with some 
pattern in some systems, and the objective in such a situ
ation is detecting the abrupt shifts, but ignoring the natural 
evolvement. To tackle this situation, Azarnoush et al. (2016) 
considered using a sliding window of reference networks 
that is updated dynamically. In this method, they dynamic
ally updated the IC parameters by estimating them using the 
sliding window of reference networks at each time point. In 
our work, an idea inspired by Azarnoush et al. (2016) can 
also be used to deal with the natural evolution. A detailed 
discussion is provided in Appendix D.3. There are four 
types of shift that can be reflected by these parameters. 
Given an MAWDN sequence:

1. the first type is change of c, which means a shift of 
community distribution;

2. the second type is change of P, which indicates the 
shift of overall interaction probability among nodes;

3. the third type is change of H, which reflects a shift of 
overall interaction intensity among nodes;

4. and the last type is change of u, which is an indication 
of the shift of the interaction type distribution.

To perform the test above, we can compare the distribu
tions parameterized by bg and distributions parameterized by 
bð0Þ: The KL-divergence can be applied to measure the dis
tance between two distributions. To simultaneously detect the 
change point and diagnose which one of the four types of shift 
leads to the change, we monitor the four types of parameters 
individually, and the charting statistics are defined as:

Qc
g ¼ 2Nð1þ qÞ � DKLðPðcjĉgÞ, Pðcjcð0ÞÞÞ

¼ 2Nð1þ qÞ �
XR

r¼1
cg
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r
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(22d) 

We chart these four statistics separately and the monitoring 
scheme trigger an Out-Of-Control (OOC) signal once one of 
the statistic goes out of its Upper Control Limit (UCL). Please 
note that this monitoring scheme considers historical infor
mation. We use simulations to determine the UCL for each 
individual chart such that a pre-specified overall IC average 
run length (ARL0) is attained, and the simulation method is 
introduced in Appendix C.1. We denote these UCLs as 
Uc, Up, Uh and Uu: The MAWDN online monitoring algo
rithm is summarized in Algorithm 2 in Appendix E.2.

Assuming that there is only one root cause, if there is an 
alarm, we first determine the type of shift according to the 
individual chart that triggers the alarm. If the shift is the first 
type, the diagnosis process finishes; If the shift falls into one 
of the other three types of shift, we need to further diagnose 
the parameter of which pair of communities have been 
changed. We note that the latter three charting statistics can 
be decomposed based on community pairs. Taking Qp

g as an 
example, we can decompose it into Qp

g ¼
P

r, s Qprs
g , where

Qprs
g ¼ 2

X

i6¼j
s

g
irs

g
js þ qNðN − 1Þĉg−1

r ĉg−1
s

� �

� DKLðBernð1 − p̂g
rsÞ, Bernð1 − pð0Þrs ÞÞ (23) 

We believe that the parameter change of the community 
pair (r, s) corresponding to the most significant increase
ment of ratio Qð�Þrs

g =Qð�Þg from IC to OOC is the root cause 
of the alarm. As we have mentioned before, the four param
eters reflect four types of shifts. If there are more than one 
of Qc

g , Qp
g , Qh

g and Qu
g out of their control limits, we can con

clude that all the shifts, related to the monitoring statistics 
which are OOC, exist in the system.

As a summary of Section 3.1–3.3, we show the overall mod
eling and monitoring framework proposed by us in Figure 4.

3.4. Discussion on the proposed model and its 
implementation

In this section, we summarize some important points on the 
proposed model and its implementation. First, some key 
parameters should be set properly, including hyperparameter 
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b2, community number R, weighted coefficient r, smooth 
parameter k and UCL. In this work, b2 and R are set 
according to some prior knowledge; r and k are set empiric
ally; and UCL is determined by simulation. See Appendix C. 
1 for details. Second, one assumption about the community 
structure and three assumptions about the node attributes 
are made to complete our model. We provide some situa
tions in which these assumptions are valid in Appendix C.2. 
Thirdly, we discuss the computation efficiency in Appendix 
C.3 and find that our method scales quadratically with the 
node number or community number, and scales linearly 
with the layer number or attribute number. Additionally, 
our method is tractable. Finally, we provide reasons why the 
single-layer network modeling methods are not suitable to 
model multilayer networks (see Appendix C.4) and why we 
use a multi-chart monitoring scheme in this work (see 
Appendix C.5).

4. Simulation study

In this section, we first use simulation experiments to valid
ate the parameter estimation accuracy of the VEM algo
rithm. Then we evaluate the performance of the proposed 
sequential-NGM chart monitoring scheme and the three 
competitive schemes in detecting the four types of shifts and 
root cause diagnosis accuracy.

4.1. Evaluation of parameter estimation

To validate the static-NGM and evaluate the performance of 
the parameter estimation method, we generate MAWDNs 
through static-NGM and access the accuracy in estimating 
model parameters with VEM. It should be noted that the 
node attribute generation process is similar to He et al. 
(2017) and each attribute is generated by a Bernoulli distri
bution independently. Given the community ID of a node, 
the attributes of the node that are strongly related to the 
community are independent and identically distributed 
(i.i.d.) generated by a Bernoulli distribution with a large 
mean p1, while the remaining attributes are i.i.d. generated 

by a Bernoulli distribution with a small mean p2. We set 
p1 ¼ 0:9, p2 ¼ 0:1: One discussion about selection of p1 and 
p2 is provided in Appendix D.1. We also estimate the model 
parameters only through network topology and compare the 
estimation results with those considering node attributes.

In the simulation, we set node number N¼ 45, commu
nity number R¼ 3, layer number L¼ 3, total attribute num
ber is T¼ 24, the number of attributes strongly related to 
each community number is eight (attributes 1–8 are strongly 
related to community 1; attributes 9–16 are strongly related 
to community 2; attributes 17–24 are strongly related to 
community 3), attribute distribution c ¼ ð1=3, 1=3, 1=3Þ:
Other model parameters are set as below:

p ¼

0:20 0:50 0:50
0:50 0:23 0:50
0:50 0:50 0:20

0

@

1

A, h ¼
20 10 10
10 25 10
10 10 24

0

@

1

A

u ¼

1=7 1=3 1=3
1=3 3=5 1=3
1=3 1=3 3=5

0

@

1

A;

4=7 1=3 1=3
1=3 1=10 1=3
1=3 1=3 1=10

0

@

1

A;

2=7 1=3 1=3
1=3 1=10 1=3
1=3 1=3 1=10

0

@

1

A

8
<

:

9
=

;

We estimate the model parameters of 100 networks and 
report the mean and standard deviation of KL divergence 
between the distributions defined by the true model parame
ters and distributions defined by the estimated model 
parameters. Table 1 displays the mean and standard devi
ation (values in brackets) of KL divergence, the columns 
with “w.” represents the results considering node attributes, 
whereas the columns with “w.o.” represents the results with
out considering node attributes. Another simulation case 
with 80 nodes is provided in Appendix D.1.

The results in Table 1 and D1 in Appendix D.1 show 
that the VEM can provide a satisfactory estimation of 
parameters of static-NGM. In addition, the estimation 
results are more accurate when considering node attributes 
than those not considering node attributes. Also, we find 
that the parameter estimation results for N¼ 45 are gener
ally more accurate than those for N¼ 80, no matter with or 
without node attribute. Such results are intuitive. On the 
one hand, the introduction of node attributes enables us to 
have more information, so that we can carry out more 
accurate community identification, thus improving the 

Figure 4. Framework of the proposed method.
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accuracy of parameter estimation. On the other hand, there 
are more samples for N¼ 80 to perform parameter estima
tion compared with the cases for N¼ 40, thus we can obtain 
more accurate parameter estimation. In addition, the intro
duction of node attributes can accelerate the convergence of 
the algorithm to some extent.

4.2. Performance of monitoring and diagnosis scheme

To evaluate the performance of the proposed sequential- 
NGM monitoring scheme, we compare it with other three 
competitive schemes: static-NGM chart, score test chart (ST 
chart), and Bayes factor chart (BF chart). The detailed 
description for these charts are given in Appendix B. We 
consider different scale of different types of shifts in Section 
3.3.3. Two metrics, ARL and diagnosis accuracy, are taken 
into account. The basic settings of each simulated networks 
are the same as those in the case in Section 4.1, also the IC 
parameters. The simulation data generating process is 
described in Appendix D.2. The overall ARL0 for each moni
toring scheme is set as 200. We assume that only one type 
of shift occurs at a time, and the degree of shift is measured 
by the KL-divergence between the distributions defined by 
OOC and IC parameters.

Table 2 displays the comparison results of four monitor
ing schemes under various degree of community distribution 
(c) shift. Acc. represents the accuracy of root cause diagno
sis, KL-divergence in the table is the degree of shift, and c is 
the value of c after a shift. Each ARL and diagnosis accuracy 
rate in the table is approximated based on 10,000 simula
tions, and the values in brackets are standard errors (SE). 
We observe that the four schemes can be ranked in the 
order of sequential-NGM> static-NGM>BF> ST according 

to ARLs, and the order is the same according to diagnosis 
accuracy rate when the degree of shift of c is not so small 
(Observations 3 to 10 in Table 2). Observations 1 and 2 in 
Table 2 show that diagnosis accuracy of ST is relatively 
larger than BF, but far less than the two four-chart schemes 
when the degree of shift of c is very small, however, the 
detection and diagnosis capability of ST and BF charts is 
very weak in this situation. Therefore, when the shift of c is 
very small, the comparison between ST chart and BF chart 
is not meaningful. The comparison results of the four moni
toring schemes under various degree of p11, h11 or u11 shifts 
are provided in Appendix D.2.

Generally, the proposed sequential-NGM chart outper
forms the other three benchmarks monitoring schemes in 
both of the metrics. Further, the above results show that the 
sequential-NGM chart outperforms the static-NGM chart 
and the BF chart outperforms the ST chart, both in terms of 
ARLs and diagnosis accuracy rate. This is because the 
sequential-NGM chart and BF chart take into account infor
mation from the historical network and can accumulate 
small shifts, thus improving the efficiency of monitoring and 
diagnosis. Also, in most cases, comparing two monitoring 
schemes that take historical information into account 
(sequential-NGM chart and BF chart) or two monitoring 
schemes that do not take historical information into account 
(static-NGM chart and ST chart), the performance of the 
multi-chart monitoring scheme in root cause diagnosis 
accuracy is often better than that of the single-chart moni
toring scheme, and in the former three types of anomalies, 
the performance of the multi-chart monitoring scheme is 
also better than that of the single-chart monitoring mode in 
ARLs. In addition, considering the historical information, 
the performance of the multi-chart scheme (sequential- 

Table 1. KL-divergence between the true distributions and the estimated distributions (N ¼ 45, R ¼ 3).

(r, s)
pð�10−2Þ hð�10−2Þ uð�10−2Þ c

w. w.o. w. w.o. w. w.o. w. w.o.

(1) 0.214(0.273) 1.772(2.694) 0.356(0.564) 16.028(24.530) 0.032(0.043) 32.542(31.877) 0.017(0.020) 0.150(0.161)
(1, 2) 0.218(0.299) 0.219(0.455) 0.536(0.651) 4.102(2.375) 0.081(0.091) 0.317(1.224)
(1, 3) 0.162(0.216) 0.112(0.178) 0.479(0.608) 0.379(0.500) 0.104(0.127) 0.061(0.063)
(1, 2) 0.167(0.262) 0.216(0.425) 0.547(0.712) 2.506(13.109) 0.083(0.092) 0.236(0.810)
(2) 0.250(0.394) 0.201(0.339) 0.421(0.598) 24.992(39.425) 0.026(0.030) 9.344(11.642)
(2, 3) 0.223(0.343) 0.276(0.800) 0.534(0.849) 13.156(55.573) 0.107(0.113) 0.667(2.437)
(1, 3) 0.187(0.241) 0.130(0.214) 0.437(0.518) 0.384(0.453) 0.098(0.0103) 0.064(0.086)
(2, 3) 0.178(0.243) 0.251(0.703) 0.653(0.997) 12.824(51.589) 0.102(0.112) 0.651(2.336)
(3) 0.219(0.302) 1.092(2.298) 0.343(0.540) 27.017(20.488) 0.026(0.035) 40.619(38.830)

Table 2. ARL and diagnosis accuracy for different shift scale of c with different schemes

No. KL divergence c
Sequential-NGM Static-NGM ST BF

ARL Acc. ARL Acc. ARL Acc. ARL Acc.

0 0 (1/3,1/3,1/3) 203.4(2.020) – 200.4(1.990) – 201.9(2.038) – 198.5(1.984) –
1 0.0003 (0.323,0.333,0.343) 180.6(1.741) 0.327 196.8(1.944) 0.261 197.0(1.980) 0.055 197.0(1.967) 0.029
2 0.0012 (0.313,0.333,0.353) 127.9(1.264) 0.523 181.8(1.837) 0.317 189.9(1.895) 0.065 187.2(1.904) 0.052
3 0.0027 (0.303,0.333,0.363) 80.60(0.771) 0.716 163.2(1.665) 0.394 176.3(1.794) 0.081 170.9(1.721) 0.085
4 0.0048 (0.293,0.333,0.373) 46.19(0.430) 0.848 138.7(1.402) 0.478 166.7(1.669) 0.099 153.1(1.552) 0.150
5 0.0075 (0.283,0.333,0.383) 27.02(0.234) 0.909 114.1(1.165) 0.570 152.4(1.535) 0.134 134.7(1.378) 0.255
6 0.0109 (0.273,0.333,0.393) 16.89(0.138) 0.952 89.85(0.916) 0.677 132.8(1.323) 0.168 115.8(1.153) 0.356
7 0.0148 (0.263,0.333,0.403) 11.56(0.088) 0.972 67.12(0.685) 0.760 116.3(1.163) 0.209 93.36(0.922) 0.487
8 0.0194 (0.253,0.333,0.413) 8.272(0.058) 0.984 49.22(0.500) 0.820 100.1(1.006) 0.256 76.60(0.764) 0.605
9 0.0246 (0.243,0.333,0.423) 6.304(0.041) 0.991 36.49(0.371) 0.875 84.96(0.849) 0.311 62.03(0.605) 0.705
10 0.0305 (0.233,0.333,0.433) 4.940(0.030) 0.993 26.75(0.273) 0.910 70.60(0.703) 0.368 48.41(0.472) 0.793
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NGM chart) in ARLs for monitoring the fourth type of 
anomaly is also superior to that of single-chart scheme (BF 
chart). These findings show the advantages of multi-chart 
monitoring. The main reason is that a single-chart monitoring 
scheme integrates all randomness based on likelihood func
tion values, reducing the sensitivity of monitoring and diag
nosis, whereas the multi-chart monitoring scheme is based on 
the values of different types of model parameters, separating 
randomness from different sources, alleviating this problem 
to some extent. Another advantage of multi-graph monitoring 
is that different weights can be set for each monitoring statis
tic based on actual requirements. In this article, we consider 
each statistic to have the same weight.

Additionally, although the performance of the ST chart 
on ARLs is better than that of the static-NGM chart when 
the historical information is not taken into account for the 
fourth type of anomaly monitoring, ST chart requires the 
information of the node community label. If this informa
tion is unknown, it needs to be inferred, but without consid
ering node attributes, the speed and accuracy of the 
inference about node community label are low, so the moni
toring and diagnosis efficiency of ST chart will be reduced. 
We also perform a comparison study between our method 
and the method of Dong et al. (2020). The detailed results 
are shown in Appendix D.2 and show that our model has a 
better performance.

5. Case study

In this section, we apply our proposed method to the Enron 
E-mail interaction dataset (Priebe et al., 2005). The October 
2001 Enron scandal that led to the bankruptcy of Enron 
Corporation makes this dataset a typical case in the area of 
network modeling and monitoring (Zou and Li, 2017; 
Gahrooei and Pynabar, 2018; Motalebi, Owlia, Amiri, and 

Fallhnezhad, 2023;  Motalebi, Stevens and Steiner, 2021; 
Stevens and Steiner, 2021).

Following the design in Dong et al. (2020), we also con
struct E-mails among employees per month as a two-layer 
weighted directed network, with one layer representing the 
carbon copy/blind carbon copy (cc/bcc) E-mails and the 
other layer representing the directly sent E-mails. The direc
tion of an edge is from sender to receiver, and its weight is 
the number of E-mails sent. Further treating the occupation 
of employees as node attributes, we then obtain the attrib
uted networks. For simplicity, we only consider the interac
tions among CEOs, presidents, managers and directors; 
then, for each node, we use a four-dimensional binary vec
tor with only one element being 1 to represent its attribute. 
We assume that there are three communities; additionally, 
we have prior knowledge about the communities that CEOs, 
presidents, managers and directors form (Gahrooei and 
Paynabar, 2018). With this knowledge and setting the hyper
parameters as we illustrate in Appendix C.1, we use the net
works for June 2000 and July 2000 as IC samples to 
estimate the IC parameters and use the networks from 
August 2000 to June 2002 to perform online monitoring.

We calculate the four charting statistics from June 2000 
to June 2002, and Figure 5 shows the results. Due to the 
unchanged community structure of the subnetwork in this 
case, we notice that Qc is approximately equal to zero; thus, 
the chart for it is uninformative. We also observe that there 
are several peaks in the charts for the remaining three statis
tics and that there are several real events during the periods 
corresponding to these peaks. In October 2000 (red line in 
the figure), Qh reaches the first peak, and Qu is in the stage 
of rapid rise. In this month, the strategies of Tim Belden, 
who was the first Enron executive to be indicted and admit 
wrongdoing, were discussed. The blue line marks May 2001, 
when Qp, Qh and Qu all reach peaks. The former Enron 
Chairman Kenneth Lay secretly met with Arnold 

Figure 5. Sequential-NGM charting statistics of Enron E-mail data.
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Schwarzenegger, former Los Angeles Mayor Richard 
Riordan and junk bond King Michael Milken in this month. 
Lay was touting a plan for solving Los Angeles’s energy cri
sis at that time. In August 2001 (orange line in the figure), 
Vice President of Enron Corporation Sherron Watkins 
reported accounting irregularities within the company to 
then-CEO Ken Lay and warned him that Enron could col
lapse amid a wave of accounting scandals. We observe this 
anomaly in the charts of Qp and Qh, i.e., a shift of both 
overall interaction probability and intensity among individu
als exists, while the method of Dong et al. (2020) failed to 
detect this anomaly. Then, from October 2001 to December 
2001, the Enron scandal was revealed, and bankruptcy 
occurred. This abnormal period is evident and marked as a 
green band in Figure 5. These events are consistent with the 
observation in Peel and Clauset (2015).

6. Discussion and conclusion

In this article, we focus on modeling and monitoring multi
layer weighted directed networks with node attributes. To 
incorporate both the node attributes and network topology, 
first, this article proposes a static NGM model. This model 
well characterizes the community structure and sparse inter
action properties of an MAWDN. Second, we extend it to a 
sequential version, i.e., sequential-NGM model, to character
ize the time-dependent property of a network sequence. A 
VEM algorithm is developed to estimate the model parame
ters and use these parameters to describe the features of net
works. A sequential-NGM chart monitoring scheme based 
on the sequential-NGM model is constructed to monitor 
four types of community-level shifts in a network sequence 
by the four sets of model parameters. A diagnosis process is 
introduced to identify the root cause of an OOC alarm.

We validate the proposed method in simulation experi
ments and observe that integrating the node attributes 
improves the accuracy of the parameter estimation, as intro
ducing node attributes can improve the accuracy of commu
nity detection. Additionally, the proposed monitoring 
scheme sequential-NGM outperforms the three benchmark 
schemes (static-NGM, BF, ST) in both the efficiency of the 
four types of shift detection and the accuracy of root cause 
diagnosis. Specifically, under the condition of multi-chart 
(single-chart), the chart considering historical information 
generally outperforms that not considering historical infor
mation. Also, given the sequential-NGM (static-NGM) used, 
the multi-chart generally has a better performance than the 
single chart, especially for the root cause diagnosis accuracy. 
The reason may be that the multi-chart can separate ran
domness from different sources and increase the sensitivity 
of monitoring and diagnosis. We also apply the proposed 
method to Enron E-mail data; the results further validate 
the efficiency of the method.

There are still some limitations in this work to be 
addressed in future research:

1. The computation efficiency is limited as the node num
ber, community number and layer number increase, 

which is also a common problem for statistical models 
for networks (Dong et al., 2020); thus, more advanced 
optimization techniques are needed.

2. The community number is treated as prior knowledge 
in this work, which may not be realistic in some cases. 
Selecting the proper community number for a multi
layer network deserves more attention.

3. The node attributes in this work are assumed to be 
highly related to communities, but how to select them 
from all available attributes remains an open topic.

4. Generally, a real network has specific features, for 
example, the power-law feature, which the model in this 
work disregards.

How to address these features should be further consid
ered, and more realistic models are needed.
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