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ABSTRACT 
Multimode processes are common in modern industry and refer to processes that work in multiple 
operating modes. Motivated by the torque control process of a wind turbine, we determine that 
there exist two types of changes in multimode processes: (i) mode transitions and (ii) parameter 
changes. Detecting both types of changes is an important issue in practice, but existing methods 
mainly consider one type of change, and thus, do not work well. To address this issue, we pro
pose a novel modeling framework for the offline change point detection problem of multimode 
processes, which simultaneously considers mode transitions and parameter changes. We character
ize each mode with a parametric cost function and formulate the problem as an optimization 
model. In the model, two penalty terms penalize the number of change points, and a series of 
constraints specify the multimode characteristics. With certain assumptions, the asymptotic prop
erty ensures the accuracy of the model solution. To solve the model, we propose an iterative algo
rithm and develop a multimode-pruned exact linear time (multi-PELT) method for initialization. 
The simulation study and the real case study demonstrate the effectiveness of our method against 
the state-of-the-art methods in terms of the accuracy of change point detection, mode identifica
tion, and parameter estimation.
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1. Introduction

Real processes in many industrial fields (such as chemical 
engineering and wind energy) are designed to work in mul
tiple operating modes (Qui~nones-Grueiro et al., 2019). Each 
mode corresponds to a relationship among system signals, 
which is usually specified at the design stage and can be 
characterized by a parametric model. We refer to such a 
process as a multimode process and refer to a process with a 
single mode as a single-mode process. Our motivating 
example is the torque control process of a horizontal-axis 
wind turbine (Burton et al., 2021). Figure 1 shows a typical 
generator torque–speed curve used for torque control, which 
contains five modes: (i) starting mode, (ii) minimum speed 
mode, (iii) Maximum Power Point Tracking (MPPT) mode 
(Yin et al., 2017), (iv) rated speed mode, and (v) rated 
power mode. Each mode has a control parameter to charac
terize its relationship. When the ambient wind speed grad
ually increases, the torque control process sequentially 
transitions from the starting mode to the rated power mode 
along the torque–speed curve.

In the wind energy industry, an important issue is to 
assess the performance of wind turbines based on historical 
data collected by the Supervisory Control and Data 
Acquisition (SCADA) system (Ding, 2019). The key aspects 

of performance assessment include power generation and 
control consistency; however, the latter has not been well 
explored. Power curves are widely utilized for power gener
ation assessment and are functional curves that map envir
onmental inputs (such as wind speed) to power output 
(Prakash et al., 2022). Effective methods have been devel
oped for power curve modeling (Lee et al., 2015; Prakash 
et al., 2023) and power curve comparison (Ding et al., 2021; 
Prakash et al., 2022). As the power curve is intrinsically 
affected by the control process (Burton et al., 2021), control 
consistency is another crucial aspect of performance assess
ment. To assess the consistency, we need to partition the 
data stream into pieces so that data points in the same piece 
have the same mode; then, for each piece, we can estimate 
its parameter and compare it with the designed value. This 
is a typical change point detection problem, but it becomes 
more challenging in the context of multimode processes.

The main challenge is that there exist two types of 
changes in multimode processes, as shown in the torque 
control process. First, wind turbines usually make frequent 
transitions between two different modes to accommodate 
the nonstationary nature of wind. For example, in Figure 
2(a), the manual evaluation reveals that the wind turbine 
made more than 2000 transitions within just 8 days. Second, 
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due to reasons such as control software upgrades, the 
parameters of some modes might change to new values. 
For example, after an upgrade on January 9, 2021, the gen
erator torque–speed scatter plot in Figure 2(b) changed 
from right to left, where all control parameters, with the 
exception of the starting mode, changed to new values. In 
summary, the two types of changes in multimode processes 
are defined as follows:

1. Mode transitions: Transition from one mode to 
another accessible mode.

2. Parameter changes: The parameters of some modes 
change to new values, which occurs less often than 
mode transitions.

In this article, we aim to develop an offline method for 
change point detection of multimode processes when both 
mode transitions and parameter changes exist. Although 
research on multimode process modeling and monitoring and 
multiple change point detection has recently proliferated, 

existing methods mainly consider one type of change and 
thus do not work well when both types of changes exist, as 
we discuss below.

1.1. Literature review

1.1.1. Multimode process modeling and monitoring
The first branch of related literature is multimode process 
modeling and monitoring, which can be classified into single- 
model methods and multiple-model methods (Qui~nones- 
Grueiro et al., 2019).

Single-model methods seek to transform the multimode 
data into approximately single-mode features and then con
struct a unified decision function for monitoring, such as 
the manifold learning-based approach (Yang et al., 2017), 
neighborhood-based approach (Xie, 2020) and deep learn
ing-based approach (Xu et al., 2022). However, these meth
ods omit the multimode characteristics and thus cannot 
distinguish between different modes.

Multiple-model methods characterize each mode with a 
local model, which can better model the multimode vari
ation. In the offline stage, multiple-model methods are 
aimed at accurately modeling each mode based on historical 
data, which is similar to a clustering problem. Many cluster
ing methods, such as K-means (Du et al., 2017), fuzzy 
C-means (Xie and Shi, 2012), spectral clustering (Xu et al., 
2021), and density-based clustering (Yu et al., 2022), have 
been applied. To improve interpretability, model-based 
methods have attracted increasing attention. For example, 
Jin and Liu (2013) built a piecewise linear regression tree 
for every quality variable in the serial-parallel multistage 
manufacturing process, Wang et al. (2015) applied a hidden 
Markov model to address the transitional mode, Haghani 
et al. (2015) combined a mixture model with partial least 
squares to model the nonlinear characteristics of wind 

Figure 1. A typical wind turbine generator torque–speed curve with five 
modes.

Figure 2. (a) Time series plot and (b) scatter plot of generator torque and speed for a real wind turbine during January 4–12, 2021. The two variables have been 
scaled by their rated values, the dashed line in (a) indicates the upgrade time, and data points during standby/downtime have been removed in (b).
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turbines, and Zhao and Zhao (2022) applied the Toeplitz 
inverse covariance-based clustering method (Hallac et al., 
2017) in multimode process modeling and monitoring. 
However, the main limitation of the above methods is that 
they do not consider parameter changes in the offline stage, 
where data points in the same mode are assumed to share 
the same parameter. As a result, if two data points originate 
from the same mode but have different parameters, the 
above methods would misidentify them as different modes. 
In the online stage, multiple-model methods are aimed at 
identifying the mode of a new data point and then deter
mining whether a fault occurs based on some monitoring 
statistics. For example, Jin and Liu (2013) constructed a 
group of Shewhart control charts to monitor the mean shifts 
of the residuals in each local model, and Zhao and Zhao 
(2022) constructed conditional thresholds of each variable 
for each mode to detect possible faults. However, when the 
parameter of some mode changes, multiple-model methods 
would inaccurately identify the parameter change as a new 
incoming mode (Chen et al., 2023; Zhang et al., 2023) or 
detect it as a fault and stop the monitoring procedure, and 
thus they cannot identify what the new parameter becomes 
and cannot well monitor the new incoming data after the 
parameter change.

1.1.2. Multiple change point detection
Another closely related research topic is multiple change 
point detection. Statistical process control (SPC) is widely 
utilized to detect process changes, and many types of control 
charts have been developed for accurate and timely anomaly 
detection (Shi, 2023; Wu et al., 2023). However, these meth
ods are typically designed to detect a single change point in 
an online manner, which cannot be easily extended to han
dle multiple change points. To detect multiple change 
points, various methods, both from Bayesian and Non- 
Bayesian perspectives, have been discussed in the literature.

Bayesian methods typically choose change points from a 
variety of candidate sets to maximize the posterior or mar
ginal likelihood. For example, to detect mean shifts among 
multiple sequences, Ko et al. (2015) proposed a Dirichlet 
process hidden Markov model, and Jin et al. (2022) devel
oped a Bayesian hierarchical model. To detect parameter 
changes of nonlinear univariate signals, a piecewise linear 
model was proposed with both particle filtering algorithm 
(Wu, Chen, Zhou and Li, 2016) and exact online Bayesian 
inference (Wu, Chen and Zhou, 2016), and Wu et al. (2019) 
further extended the univariate case to multivariate signals 
with a Bayesian piecewise constant mean and covariance 
model. However, these methods detect parameter changes 
with a single-mode setting and thus cannot accurately han
dle multimode processes.

Non-Bayesian methods usually formulate the problem as 
an optimization model by specifying the cost function that 
characterizes the relationship among variables for a given 
data piece (Truong et al., 2020). To achieve a specific spars
ity structure and avoid overfitting, regularization methods 
are typically combined into the optimization model by add
ing penalty terms to the objective function, such as the 

linear penalty (Killick et al., 2012; Xu et al., 2023) and the 
fused LASSO penalty (Tibshirani et al., 2005; Zhang et al., 
2021). To address different application scenarios, different 
types of cost functions have been applied in the literature. 
For example, the nonparametric likelihood (Zou et al., 2014) 
can be applied when the relationship is difficult to model 
parametrically, the negative loglikelihood (Wang and Zou, 
2023) is typically used to detect changes in distributional 
parameters and to detect changes in regression parameters, 
the cost function can be set as the sum of squared errors 
(Truong et al., 2020). Recently, to detect changes in the lin
ear manifold structure, Xu et al. (2023) proposed to set the 
cost function as the subspace reconstruction error plus a 
LASSO penalty. However, the above methods use a unified 
cost function for multiple change point detection, whereas 
for multimode processes, multiple cost functions are needed 
to better model multiple modes. As a result, the above 
methods cannot distinguish between different modes and 
are thus unable to accurately detect the change points.

To the best of our knowledge, some multiple change 
point detection methods also mentioned two types of 
changes, but the changes in their problem settings are differ
ent from our case (i.e., mode transitions and parameter 
changes), as we discuss below. In Wu et al. (2019), except 
for parameter changes, they proposed to detect the steady- 
state from the transient-state based on the expected length 
of the current segment, but their method is in a single- 
mode setting and cannot detect mode transitions. In 
Juodakis and Marsland (2023), they proposed to detect both 
signal changes and nuisance changes, but these two types of 
changes are both parameter changes, which are only distin
guished by the segment duration.

Above all, existing methods cannot well handle multi
mode processes with both mode transitions and parameter 
changes. To fill this gap, we propose a novel modeling 
framework for the offline change point detection problem of 
multimode processes (CPD-MMP), which simultaneously 
considers the aforementioned two types of changes. The 
main contributions are listed as follows:

1. The proposed modeling framework can simultaneously 
detect mode transitions and parameter changes for 
multimode processes. Specifically, we incorporate engin
eering knowledge into the model by specifying the 
number of modes, mode transition matrix, and mode- 
specific cost functions, and formulate the problem as a 
constrained optimization model with two penalty terms.

2. An iterative algorithm is proposed to solve the opti
mization model, and a multimode-Pruned Exact Linear 
Time (multi-PELT) method is developed for 
initialization.

3. The proposed method can achieve better performance 
than the state-of-the-art methods in terms of change 
point detection, mode identification, and parameter 
estimation.

The remainder of the article is organized as follows: We 
formulate the CPD-MMP problem as an optimization model 
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in Section 2. In Section 3, we develop an iterative algorithm 
to solve the optimization model and discuss how to select 
appropriate penalty weights. In Section 4, we present the 
settings, results, and analysis of both the simulation study 
and the real case study. We conclude this article and discuss 
future research directions in Section 5. A comprehensive 
table describing every notation introduced in this article is 
available in Section S1 of the Supplementary Materials.

2. Problem formulation

2.1. Basic settings from engineering knowledge

Consider a multimode process of length T with p variables. 
At time t ¼ 1, :::, T, we collect a vector Y t ¼ Y1t , :::, Yptð Þ

0

from the process, where Yit , i ¼ 1, :::, p denotes variable i at 
time t: We denote the data piece from t1 to t2 (t1 � t2) by 
Y t1:t2 ¼ Y t1 , Y t1þ1, :::, Y t2ð Þ: The full data stream is Y1:T :

It is assumed that the following basic settings are known 
from engineering knowledge:

1. Number of modes: M � 1 is denoted as the number of 
modes, and M¼ 1, :::, Mf g is denoted as the mode set. 
M ¼ 1 represents a single-mode process.

2. Mode transition matrix: A ¼ aijð Þ, aii ¼ 1, i, j 2 M is 
denoted as the mode transition matrix, which describes 
the transition availability between any two modes. If 
mode i 2 M can transition to mode j 2 M, aij ¼ 1;

otherwise, aij ¼ 0:
3. Mode-specific cost function: C ið Þ Y t1:t2 ; h

ðiÞ
� �

, hðiÞ 2 H ið Þ

is denoted as the cost function that models the relation
ship among the p variables when the process is operat
ing under mode i 2 M, where hðiÞ is the parameter, 
and H ið Þ is the parameter space. If hðiÞ is unknown, we 
can estimate it with Y t1:t2 (a data piece from mode i) by

ĥ
ið Þ

t1:t2
¼ argmin

hðiÞ2H ið Þ
C ið Þ Y t1:t2 ; h

ðiÞ
� �

: (1) 

For example, if data points from mode i are independent 

and identically distributed with density function f �; h ið Þ
� �

, a 
natural choice of the cost function is the negative loglikeli
hood, that is,

C ið Þ Y t1:t2 ; h
ðiÞ

� �

¼ −
Xt2

t¼t1
log f Y t; h

ið Þ
� �

, 

where hðiÞ is the distribution parameter. If there exists a lin
ear relationship between one variable (e.g., Y1t) and the 
remaining variables, we can use the sum of squared errors, 
that is,

C ið Þ Y t1:t2 ; h
ðiÞ

� �

¼
Xt2

t¼t1
Y1t − h

ið Þ
1 − h

ið Þ
2 Y2t − � � � − h ið Þ

p Ypt

� �2
, 

where hðiÞ ¼ h
ið Þ

1 , :::, h ið Þ
p

� �0
contains the regression 

coefficients.

The mode-specific cost function C ið Þ Y t1:t2 ; h
ðiÞ

� �

quanti

fies how well the mode i and the parameter hðiÞ fit the given 

data piece Y t1:t2 , which is introduced here for ease of formu
lating the problem as an optimization model (please see 
Section 2.3 for details).

As a result, proper specification of the cost function is 
important. To ensure model performance, the cost function 
of mode i is expected to well capture the nature of mode i, 
and the cost functions of two different modes are expected 
to be distinguishable. Some concrete assumptions about the 
cost function are provided in Section S2.1 of the 
Supplementary Materials, which are imposed to construct 
the asymptotic property of the model solution.

In practice, as the multimode process operates according 
to engineering design, we recommend selecting the cost 
function and the corresponding parameter space based on 
engineering knowledge of each mode. In this way, we can 
expect that the selected cost functions can well capture the 
multimode characteristics of the process.

2.2. Definition of a change point and the related 
decision variables

At time t ¼ 1, :::, T, we denote the mode of Y t by mt and 
the corresponding parameter by hðmtÞ

t : For ease of expressing 
parameter changes, we store the latest parameters of all 

modes in a parameter list denoted by ht ¼ h 1ð Þ
t , :::, h Mð Þ

t

� �

:

In this parameter list, hðmtÞ
t is the parameter of the current 

mode mt , while h
ðiÞ
t , i 6¼ mt are M − 1 virtual parameters 

whose values are inherited from the previous time point, 
that is, h

ðiÞ
t ¼ h

ðiÞ
t−1 for i 6¼ mt; t ¼ 1, :::, T: In Figure 3, the 

virtual parameters are marked by dashed circles. At time 0, 
the parameter is initialized as h

ðiÞ
0 ¼ h

ðiÞ
t0i

, where t0i ¼

min sjms ¼ if g is the first appearance time of mode i: The 
definition of a change point is given as follows:

Definition 1. (Change point). Time t is referred to as a 
change point if the mode or the parameter list at time t þ 1 
differs with time t, that is, if mtþ1 6¼ mt or htþ1 6¼ ht , 
for t ¼ 1, :::, T − 1:

As discussed in Section 1, there are two types of changes 
in multimode processes, and generally, parameter changes 
occur less often than mode transitions. To clearly express 
this point, we divide all change points into two categories 
based on whether the parameter is changed, as defined 
below. 

Definition 2. (Parameter-change point & Mode-transition 
point). A change point t is referred to as a parameter- 
change point if htþ1 6¼ ht (case 2 and case 3 in Figure 3) 
and is referred to as a mode-transition point if mtþ1 6¼

mt , htþ1 ¼ ht (case 4 in Figure 3).  

Definition 2 is illustrated in Figure 3. We can see that 
the parameter change is defined in terms of the parameter 
list ht instead of the parameter of the current mode (i.e., 
h
ðmtÞ
t ), and thus mode transitions may not lead to parameter 

changes. As the M − 1 virtual parameters in ht are not free 
to change, ht is not independent of mt: In addition, the 
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parameter and mode can change at the same time (as shown 
by case 3 in Figure 3), which is referred to as a parameter- 
change point in Definition 2. 

Definition 3. (Segment & Subsegment). The data piece 
between two successive parameter-change points is referred 
to as a segment. The data piece between two successive 
change points is referred to as a subsegment. 

By Definition 2 and Definition 3, we assume that there 
are C � 0 parameter-change points in Y1:T , which divide 
Y1:T into C þ 1 segments; and we assume that there are 
Kc � 0 mode-transition points inside segment c ¼
1, :::, C þ 1, which divide segment c into Kc þ 1 subseg-
ments. Thus, the total number of change points in Y1:T 

is C þ
PCþ1

c¼1 Kc:

For the C parameter-change points, we define their posi-
tions as 0 < sP

1 < � � � < sP
C < T with the convention of sP

0 ¼

0 and sP
Cþ1 ¼ T, where the superscript “P” means 

“Parameter change”. 
For the Kc mode-transition points inside segment c ¼

1, :::, C þ 1, we define their positions as sP
c−1 < sc, 1 < ::: <

sc, Kc < sP
c with the convention of sc, 0 ¼ sP

c−1 and sc, Kcþ1 ¼

sP
c , where sc, k denotes the kth mode-transition point inside 

segment c: We refer to the kth subsegment in segment c as 
subsegment c:k:

As data points in the same subsegment share the same 
mode, we define mc, k as the mode of subsegment c:k for c ¼
1, :::, C þ 1; k ¼ 1, :::, Kc þ 1: As data points in the same seg-

ment share the same parameter, we define hP
c ¼

h 1ð Þ
c , :::, h Mð Þ

c

� �

as the parameter list of segment c for c ¼

1, :::, C þ 1: At time 0, hP
0 is initialized as h ið Þ

0 ¼ h ið Þ
c0i

, i 2 M, 
where c0i¼min cjmc,k¼ i for at least one k2f1,:::,Kcþ1gf g

is the first segment that contains a subsegment of mode i:
Thus far, we have defined all decision variables 

as DV¼ C, sP
c

� �
, hP

c
� �

, Kcð Þ, sc,kð Þ, mc,kð Þ

n o
:

To construct the optimization model in Section 2.3, we 
also need to obtain the relationship between hP

c and hP
c−1:

For two successive segments c − 1 and c, it follows from 
Definition 2 that the parameter changes at the first subseg-
ment in segment c, i.e., subsegment c:1, which means that 
h

mc, 1ð Þ
c 6¼ h

mc, 1ð Þ
c−1 , whereas the parameters of the other modes 

i 6¼ mc, 1 remain unchanged, that is,

h ið Þ
c ¼ h

ið Þ
c−1 for i 2 M, i 6¼ mc, 1; c ¼ 1, :::, C þ 1: (2)  

Figure 4 shows an example of a multimode process with 
M ¼ 2 modes. The mode set is M¼ 1, 2f g and the mode 

transition matrix is A ¼ 1 1
1 1

� �

: In Figure 4, there are 

C ¼ 2 parameter-change points (i.e., sP
1 and sP

2 ) and they 
divide the data stream into three segments. Taking segment 

1 as an example, its parameter list is hP
1 ¼ h

1ð Þ
1 , h 2ð Þ

1

� �

¼

2, 5ð Þ, and there is K1 ¼ 1 mode-transition point (i.e., s1, 1) 
inside segment 1. s1, 1 further divides segment 1 into two 
subsegments whose modes are m1, 1 ¼ 1 and m1, 2 ¼ 2: After 
the first parameter-change point sP

1 , the parameter of mode 
1 changes from h 1ð Þ

1 ¼ 2 to h 1ð Þ
2 ¼ 1, whereas the parameter 

of mode 2 keeps unchanged, i.e., h 2ð Þ
1 ¼ h

2ð Þ
2 ¼ 5:

Figure 3. Illustration of parameter-change point (case 2 and case 3) and mode-transition point (case 4). The mode at time t is mt ¼ i and the mode at time t þ 1 is 
either i or j 6¼ i: The virtual parameters are marked by dashed circles, and the dashed horizontal arrow indicates that hðlÞtþ1 ¼ h

ðlÞ
t for l 6¼ mtþ1: The variables that 

change after time t are marked with a star.

IISE TRANSACTIONS 5



2.3. Optimization model for CPD-MMP 

In Section 2.2, we have defined all decision variables in DV:
For ease of quick reference, Table 1 lists the notations used 
in the optimization model, and a more comprehensive nota-
tion table describing all notations introduced in this article 
can be found in Section S1 of the Supplementary Materials. 

We formulate the CPD-MMP problem as the following 
Model Q:

min
DV

XCþ1

c¼1

XKcþ1

k¼1
C mc, kð Þ Ysc, k−1þ1:sc, k ; h

mc, kð Þ
c

� �

þ b C þ
XCþ1

c¼1
Kc

� �

þ kC, (Q) 

subject to :

0 ¼ sP
0 < sP

1 < � � � < sP
C < sP

Cþ1 ¼ T; (C1) 

sP
c−1 ¼ sc, 0 < sc, 1 < ::: < sc, Kc < sc, Kcþ1 ¼ sP

c for c

¼ 1, :::, C þ 1;

(C2) 

amc, Kcþ1mcþ1, 1 ¼ 1 for c ¼ 1, :::, C if C > 0; (C3) 

amc, kmc, kþ1 ¼ 1 for c ¼ 1, :::, C þ 1; k ¼ 1, :::, Kc if Kc > 0;

(C4) 

h
ið Þ

0 ¼ h
ið Þ

min cjmc, k¼if g
for i 2 M if 9mc, k ¼ i; h ið Þ

0 ¼ null for i

2 M if @mc, k ¼ i;
(C5) 

h ið Þ
c ¼ h

ið Þ
c−1 for i 2 M, i 6¼ mc, 1; c ¼ 1, :::, C þ 1; (C6) 

C, K1, :::, KCþ1 2 N: (C7)  

In the objective function of Model Q, the first term evalu-
ates the total cost of all subsegments, the second term with 
weight b penalizes the total number of change points, and 
the third term with weight k ensures the sparsity of param-
eter-change points. Constraints C1 and C2 specify all par-
ameter-change points and all mode-transition points. 
Constraints C3 and C4 ensure the mode transition availabil-
ity between two successive subsegments over two adjacent 
segments and inside the same segment. Constraints C5 ini-
tialize the parameter list, and when there does not exist a 

subsegment of mode i, h
ið Þ

0 is set to null. Constraints C6 
utilize Equation (2) to bridge the relationship between two 
successive parameter lists, and constraint C7 specifies the 
number of change points. 

Notably, the proposed model is flexible, and thus, it can 
address a variety of multimode processes. First, there is no 
rigid restriction on the form of cost functions, which can be 
specified by engineering knowledge. Second, special cases 
have been covered by the proposed model: when M ¼ 1, it 
degrades to the change point detection problem of a single- 
mode process (e.g., Xu et al., 2023); when C ¼ 0, it 
addresses a multimode process without a parameter change 
(e.g., Hallac et al., 2017). Under certain assumptions, the 
asymptotic property given in Section S2 of the 
Supplementary Materials indicates that when the sampling 
resolution is sufficiently high, we can get a reasonably accur-
ate solution by solving Model Q. 

3. Optimization method 

In this section, we derive an equivalent formulation of 
Model Q in Section 3.1. Based on the new formulation, we 
propose an iterative algorithm for solving CPD-MMP and 
develop a multi-PELT method for initialization, which is 
detailed in Section 3.2. We discuss how to select the two 
penalty weights (i.e., b and k) in Section 3.3. 

3.1. An equivalent formulation of the optimization 
model 

To facilitate the derivation of the proposed algorithm, we 
derive a new formulation of CPD-MMP, where each param-
eter-change point is not explicitly defined, but rather it is 
implicitly specified by the parameter change of two adjacent 
subsegments. 

Specifically, for the K ¼ C þ
PCþ1

c¼1 Kc change points 
defined in Section 2.2, that is, s1, 1, :::, s1, K1 , sP

1 , :::, sP
C, 

sCþ1, 1, :::, sCþ1, KCþ1 , we rewrite them with a single index k ¼
1, :::, K as s1, s2, :::, sK , and we set s0 ¼ 0 and sKþ1 ¼ T: By 
Definition 3, these K change points divide the data stream 
into K þ 1 subsegments. For each subsegment k ¼
1, :::, K þ 1, we denote its mode by mk and the correspond-

ing parameter list by hk ¼ h
1ð Þ

k , :::, h Mð Þ
k

� �

, where h ið Þ
k , i 6¼ mk 

are M − 1 virtual parameters that satisfy h
ið Þ

k ¼ h
ið Þ

k−1 with 
h

ið Þ
0 ¼ h

ið Þ
k0i

, k0i ¼ min kjmk ¼ if g: For notational simplicity, 

Figure 4. An example for illustrating the meanings of the decision variables.
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we define s ¼ s1, :::, sKð Þ, m ¼ m1, :::, mKþ1ð Þ, 
and h ¼ h1, :::, hKþ1ð Þ:

In this way, a change point sk is a parameter-change 
point if hkþ1 6¼ hk for k ¼ 1, :::, K: Thus, the number of par-
ameter-change points can be computed by

C ¼
XK

k¼1
I hkþ1 6¼ hkð Þ ¼

XK

k¼1

XM

i¼1
I h

ið Þ
kþ1 6¼ h

ið Þ
k

� �

:

Substituting the above notations and expressions into 
Model Q, we obtain the following Model P:

min
K, s, m,h

XKþ1

k¼1
C mkð Þ Ysk−1þ1:sk ; h

mkð Þ

k

� �

þ bK

þ k
XK

k¼1

XM

i¼1
I h

ið Þ
kþ1 6¼ h

ið Þ
k

� �

, (P) 

subject to :

0 ¼ s0 < s1 < � � � < sK < sKþ1 ¼ T; (C8) 

amkmkþ1 ¼ 1 for k ¼ 1, :::, K if K > 0; (C9) 

h
ið Þ

0 ¼ h
ið Þ

min kjmk¼if g
for i 2 M if 9mk ¼ i; h ið Þ

0 ¼ null for i

2M if @mk ¼ i;
(C10) 

h
ið Þ

k ¼ h
ið Þ

k−1 for i 2M, i 6¼ mk; k ¼ 1, :::, K þ 1; (C11) 

K 2 N: (C12) 

3.2. Solution algorithm for CPD-MMP

We first introduce the solution algorithm for change point 
detection of single-mode processes. On this basis, we detail 
the proposed solution algorithm for CPD-MMP in Section 
3.2.1–Section 3.2.3.

Change point detection of single-mode processes is typic-
ally formulated as

min
K � 0, 0 < s1 < � � � < sK < T,

hk 2 H, k ¼ 1, :::, K þ 1

XKþ1

k¼1
C Ysk−1þ1:sk ; hkð Þ þ bK,

(3) 

where K is the number of change points, s1, :::, sK are K 
change points with s0 ¼ 0 and sKþ1 ¼ T, and hk 2 H is the 
parameter of subsegment k for k ¼ 1, :::, K þ 1: Equation (3)
is simpler than Model P because it only involves one mode 
and one type of change point.

To exactly solve Equation (3), Jackson et al (2005) pro-
posed the Optimal Partitioning (OP) method based on 
dynamic programming. At time s ¼ 1, :::, T, the OP method 
utilizes a recursive formula by conditioning on the last 
change point before s: Let F sð Þ denote the optimal value of 
Equation (3) for Y1:s, and let t 2 Rs denote the last change 
point before s, where Rs ¼ tj0 � t < sf g is the candidate set 
of the last change point. As there is no change point 
between t and s, F sð Þ is related to the optimal value for 
Y1:t , i.e., F tð Þ, plus the cost for subsegment Y tþ1:s and the 
penalty weight b, that is,

F sð Þ ¼ min
t2Rs

F tð Þ þmin
h2H
C Y tþ1:s; hð Þ þ b

n o
: (4) 

Setting F 0ð Þ ¼ −b and utilizing the above recursion for 
s ¼ 1, :::, T, we can obtain the optimal partition of Y1:T with 
a computation complexity of O T2ð Þ:

To further improve the computational efficiency, Killick 
et al. (2012) proposed the PELT method that recursively 
prunes the candidate set based on the following theorem.

Theorem 1. (Theorem 3.1 in Killick et al., 2012). If there 
exists a constant KP, such that for all t < s < T, we have

min
hl2H
C Y tþ1:s; hlð Þ þmin

hr2H
C Ysþ1:T ; hrð Þ þ KP � min

h2H
C Y tþ1:T ; hð Þ:

(5)  

Then, if

F tð Þ þmin
h2H
C Y tþ1:s; hð Þ þ KP � F sð Þ (6) 

holds, t can never be the optimal last change point before T:

Table 1. Notations used in the optimization model.

Notation Description

T The length of the data
Y t ¼ Y1t , :::, Yptð Þ

0 The vector of the p variables collected at time t
Y t1 :t2 ¼ Y t1 , Y t1þ1, :::, Y t2ð Þ The data piece that contains data points from time t1 to t2
M, M¼ 1, :::, Mf g The number of modes and the mode set
A ¼ aijð Þ, aii ¼ 1, i, j 2 M The mode transition matrix

C ið Þ Y t1 :t2 ; h
ið Þ

� �

The mode-specific cost function for mode i with parameter h ið Þ

C The number of parameter-change points
Kc The number of mode-transition points inside segment c
sP

1, :::, sP
C The positions of all C parameter-change points with sP

0 ¼ 0, sP
Cþ1 ¼ T

sc, 1, :::, sc, Kc The positions of all Kc mode-transition points inside segment c with sc, 0 ¼ sP
c−1, sc, Kcþ1 ¼ sP

c

mc, k The mode of subsegment c:k

h
ið Þ

0 The initial parameter of mode i

hP
c ¼ h 1ð Þ

c , :::, h Mð Þ
c

� �

The parameter list of segment c
DV The set of decision variables in the optimization model
b, k The two penalty weights of the optimization model
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Based on Theorem 1, the last change point that satisfies 
Equation (6) can be removed from the candidate set Rs, 
which can help reduce the size of Rs: The pruning process is

Rsþ1 ¼ sf g [ t 2 RsjF tð Þ þmin
h2H
C Y tþ1:s; hð Þ þ KP < F sð Þ

n o
:

(7) 

The PELT method is detailed in Algorithm 1. Killick 
et al. (2012) pointed out that nearly all cost functions used 
in practice satisfy Equation (5). For example, KP ¼ 0 if the 
cost function is the negative loglikelihood. They further 
proved that under certain conditions, the computation com-
plexity of Algorithm 1 is O Tð Þ, much faster than O T2ð Þ of 
the OP method.

Algorithm 1. The PELT method. 
Set F 0ð Þ ¼ −b, R1 ¼ 0f g:
For s ¼ 1, :::, T :

Calculate F sð Þ by Equation (4).  
Set Rsþ1 by Equation (7). 

The optimal value is F Tð Þ:
The optimal solution is obtained by following the recur-
sive path of F Tð Þ:

However, Algorithm 1 cannot be directly extended to 
solve Model P, because a recursion like Equation (4) is not 
satisfied in our case. In Model P, the second penalty term 
and the constraints C10 and C11 introduce a complex par-
ameter dependency structure. As a result, the estimation of 
the parameter h mkð Þ

k not only depends on subsegment k itself, 

but also depends on other subsegments l 2

l 6¼ kjml ¼ mk, h mlð Þ

l ¼ h
mkð Þ

k

n o

with the same mode and the 
same parameter. 

To tackle this difficulty, we learn from Wang et al. 
(2022) and propose an iterative algorithm outlined in 
Algorithm 2 to solve Model P, where the decision variables 
are divided into two groups:

1. K, s, m : The number of change points, the list of 
change points, and the modes of all subsegments.

2. C, sP, hP : The number of parameter-change points, the 
list of parameter-change points, and the parameter lists 
of all segments.

Note that for ease of algorithm derivation, we represent 
h ¼ h1, :::, hKþ1ð Þ (i.e., the K þ 1 parameter lists of all sub-
segments in Model P) by sP ¼ sP

1 , :::, sP
C

� �
(i.e., the C param-

eter-change points with sP
0 ¼ 0, sP

Cþ1 ¼ T) and 

hP ¼ hP
1 , :::, hP

Cþ1

� �

(i.e., the C þ 1 parameter lists of all seg-
ments). Since subsegments in the same segment share the 
same parameter list, if we obtain C, sP, hP, we can get h by

hk ¼ hP
c if sP

c−1 < sk � sP
c , for k ¼ 1, :::, K þ 1; c

¼ 1, :::, C þ 1:

In Algorithm 2, we first apply a multi-PELT method to ini-
tialize K, s, m, which is detailed in Section 3.2.1; then, we 
alternately update C, sP, hP and K, s, m until converge, as 
detailed in Section 3.2.2 and Section 3.2.3. Algorithm 2 con-
verges when all decision variables keep unchanged.

Algorithm 2. An iterative algorithm for solving Model P. 
Initialize K ¼ ~K , s ¼ ~s, m ¼ ~m; please refer to 
Section 3.2.1. 
Iteration until converge:  

Update C, sP, hP given K, s, m; please refer to 
Section 3.2.2.  
Update K, s, m given C, sP, hP; please refer to 
Section 3.2.3. 

3.2.1. Initializing K, s, m 
Good initialization of K, s, m is important for Algorithm 2. 
One intuitive idea is to slightly modify Model P so that the 
modified model is relatively easy to solve. Based on the 
above consideration, we propose to initialize K, s, m by solv-
ing the following Model P0, which is obtained by dropping 
the second penalty term of Model P:

min
K, s, m,h

XKþ1

k¼1
C mkð Þ Ysk−1þ1:sk ; h

mkð Þ

k

� �

þ bK, (P0) 

subject to constraints C8� C12 of Model P:
Since there is no penalty for the number of parameter- 
change points, Model P0 will generate a solution where all 
change points become parameter-change points, so the par-
ameter of each subsegment can be independently estimated, 
no longer relying on other subsegments. Therefore, Model 
P0 can be solved by dynamic programming. 

Let F s, jð Þ denote the optimal value of Model P0 for Y1:s 
when the mode of Ys is j: Then, F s, jð Þ satisfies the following 
recursive relationship:

F s, jð Þ ¼ min
t2R s, jð Þ

min
i:aij¼1

F t, ið Þ þ min
h jð Þ2H jð Þ

C jð Þ Y tþ1:s; h
jð Þ

� �
þ b

� �

,

(8) 
where R s, jð Þ ¼ tj0 � t < sf g is the candidate set of the last 
change point at time s when the mode of Ys is j: Recall that 
for single-mode processes, the PELT method can help prune 
the candidate set. Fortunately, for multimode processes, 
Theorem 2 below enables us to do similar pruning 
for R s, jð Þ:

Theorem 2. If there exists a constant KP, such that for all 
t < s < T and for all j 2M, we have

min
h

jð Þ
l 2H

jð Þ
C jð Þ Y tþ1:s; h

jð Þ
l

� �

þ min
h

jð Þ
r 2H

jð Þ
C jð Þ Y sþ1:T ; h jð Þ

r

� �

þ KP

� min
h jð Þ2H jð Þ

C jð Þ Y tþ1:T ; h jð Þ
� �

:

(9)  
Then, if

min
i:aij¼1

F t, ið Þ þ min
h jð Þ2H jð Þ

C jð Þ Y tþ1:s; h
jð Þ

� �
þ KP � min

i:aij¼1
F s, ið Þ

(10) 
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holds, t can never be the optimal last change point before T 
when the mode of YT is j:

The proof of Theorem 2 is provided in Section S3 of the 
Supplementary Materials. Based on Theorem 2, for j 2 M
and at time s, we only need to consider candidate last 
change points that violate Equation (10) for future recur-
sions. Therefore, the candidate set R s, jð Þ can be pruned 
recursively by

R sþ 1, jð Þ ¼ sf g

[
n

t 2 R s, jð Þj min
i:aij¼1

F t, ið Þ þ min
h jð Þ2H jð Þ

C jð Þ Y tþ1:s; h
jð Þ

� �

þ KP < min
i:aij¼1

F s, ið Þ
o
:

(11) 

The multi-PELT method for solving Model P0 is detailed 
in Algorithm 3.

Algorithm 3. The multi-PELT method for solving 
Model P0. 

Set F 0, jð Þ ¼ −b, R 1, jð Þ ¼ 0f g for all j 2 M:

For s ¼ 1, :::, T :

Calculate F s, jð Þ by Equation (8) for all j 2 M:

Set R sþ 1, jð Þ by Equation (11) for all j 2 M:

The optimal value is minj2MF T, jð Þ:

The optimal solution is obtained by following the recur-
sive path of minj2MF T, jð Þ:

We assume that there are ~K change points in the optimal 
solution of Model P0, denoted by ~s ¼ ~s1, :::, ~s ~Kð Þ with the 
convention of ~s0 ¼ 0 and ~s ~Kþ1 ¼ T, and we denote the 
optimal modes of all subsegments by ~m ¼ ~m1, :::, ~m ~Kþ1

� �
:

We initialize K, s, m with

K ¼ ~K , s ¼ ~s, m ¼ ~m:

3.2.2. Updating C, sP, hP 

To update C, sP, hP, we need to solve Model P given K ¼
~K , s ¼ ~s, m ¼ ~m, which is formulated as the following 
Model P1:

min
h

X~Kþ1

k¼1
C ~mkð Þ Y~sk−1þ1:~sk ; h

~mkð Þ

k

� �

þ k
X~K

k¼1

XM

i¼1
I h

ið Þ
kþ1 6¼ h

ið Þ
k

� �

, (P1) 

subject to :

h
ið Þ

0 ¼ h
ið Þ

min kj ~mk¼if g
for i 2 M if 9~mk ¼ i; h ið Þ

0 ¼ null for i

2 M if @ ~mk ¼ i;
(C13) 

h
ið Þ

k ¼ h
ið Þ

k−1 for i 2 M, i 6¼ ~mk; k ¼ 1, :::, ~K þ 1: (C14)  

Note that h will be expressed as C, sP, hP in the following 
solution procedures. 

To solve Model P1, we rewrite its objective function by 
putting terms from the same mode together:

minh

P~Kþ1
k¼1 C

~mkð Þ Y~sk−1þ1:~sk ; h
~mkð Þ

k

� �

þ k
X~K

k¼1

XM

i¼1
I h

ið Þ
kþ1 6¼ h

ið Þ
k

� �

¼ minh

PM
i¼1

P
k2 kj~mk¼if g C

ið Þ Y~sk−1þ1:~sk ; h
ið Þ

k

� �

þ k
P~Kþ1

k¼2 I h
ið Þ

k 6¼ h
ið Þ

k−1

� �h i

¼
PM

i¼1 min
h

ið Þ
k ,

k ¼ 1, :::, ~K þ 1

X

k2 kj~mk¼if g

C ið Þ Y~sk−1þ1:~sk ; h
ið Þ

k

� �

þ k
X~Kþ1

k¼2
I h

ið Þ
k 6¼ h

ið Þ
k−1

� �" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
The objective function of the ith sub� model:

:

Therefore, Model P1 is equivalent to M independent sub- 
models, each of which deals with subsegments of the same 
mode, as formulated in the following Model P1.i:

min
h

ið Þ
k ,

k ¼ 1, :::, ~K þ 1

X

k2 kj~mk¼if g

C ið Þ Y~sk−1þ1:~sk ; h
ið Þ

k

� �"

þk
X~Kþ1

k¼2
I h

ið Þ
k 6¼ h

ið Þ
k−1

� ��

, (P1.i) 

subject to :

h
ið Þ

0 ¼ h
ið Þ

min kj~mk¼if g
; (C15) 

h
ið Þ

k ¼ h
ið Þ

k−1 if i 6¼ ~mk; for k ¼ 1, :::, ~K þ 1: (C16)  

To simplify the notation, we assume that there are Ki sub-
segments of mode i, with their indexes denoted by 
ki, 1, :::, ki, Ki : Let Y i

1, ::::, Y i
Ki denote the data pieces in these 

Ki subsegments, in which

Y i
l ¼ Y~ski, l−1þ1:~ski, l

, l ¼ 1, :::, Ki 

is the data piece in the lth subsegment of mode i, and let 
Y i

l1:l2 ¼ Y i
l1 , :::, Y i

l2

� �
, 1 � l1 � l2 � Ki denote the data pieces 

from l1 to l2: Substituting constraints C15, C16 and the 
above notations into the objective function of Model P1.i, 
we obtain the following Model P1.i0:

min
h

ið Þ
ki, l

, l¼1, :::, Ki

XKi

l¼1
C ið Þ Y i

l; h
ið Þ

ki, l

� �

þ k
XKi

l¼2
I h

ið Þ
ki, l
6¼ h

ið Þ
ki, l−1

� �

:

(P1.i0) 

Model P1.i0 is similar to the change point detection prob-
lem of single-mode processes and can be solved by the 
PELT method. Let GðiÞ lð Þ denote the optimal value of Model 
P1.i0 for Y i

1:l: Then, GðiÞ lð Þ satisfies the following recursive 
relationship:

GðiÞ lð Þ ¼ min
n2R ið Þ lð Þ

GðiÞ nð Þ þ min
h ið Þ2H ið Þ

Xl

o¼nþ1
C ið Þ Y i

o; h ið Þ
� �

þ k

� �

,

(12) 

where R ið Þ lð Þ is the candidate set of the last change point for 
the lth subsegment of mode i: To apply the PELT method, 
we assume that there exists a constant KP1 such that for all 
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n < l < L and i 2 M,

min
h

ið Þ
1 2H

ið Þ

Xl

o¼nþ1
C ið Þ Y i

o; h
ið Þ

1

� �

þ min
h

ið Þ
2 2H

ið Þ

XL

o¼lþ1
C ið Þ Y i

o; h
ið Þ

2

� �

þ KP1 � min
h ið Þ2H ið Þ

XL

o¼nþ1
C ið Þ Y i

o; h ið Þ
� �

:

Then, we can recursively prune the candidate set R ið Þ lð Þ
by

R ið Þ l þ 1ð Þ ¼ lf g [ n 2 R ið Þ lð ÞjG ið Þ nð Þ þ min
h ið Þ2H ið Þ

�

Xl

o¼nþ1
C ið Þ Y i

o; h
ið Þ

� �

þ KP1 < G ið Þ lð Þg: (13) 

The PELT method for solving Model P1.i0 is summarized 
in Algorithm 4.

Algorithm 4. The PELT method for solving Model P1.i0. 

Set GðiÞ 0ð Þ ¼ −k, R ið Þ 1ð Þ ¼ 0f g:
For l ¼ 1, :::, Ki :

Calculate GðiÞ lð Þ by Equation (12).  
Set R ið Þ lþ 1ð Þ by Equation (13). 

The optimal value is GðiÞ Kið Þ:

The optimal solution is obtained by following the recur-
sive path of GðiÞ Kið Þ:

We assume that there are ~CðiÞ change points in the opti-
mal solution of Model P1.i0, denoted by ~sP, i

c , c ¼ 1, :::, ~CðiÞ, 
which are all parameter-change points of Model P1. The 
optimal parameter for each subsegment of mode i is denoted 
by ~h

i
ki, l

, l ¼ 1, :::, Ki: Then, the optimal parameters of Model 

P1.i, denoted by ~h
ið Þ

k , k ¼ 1, :::, ~K þ 1, can be obtained by 
extending ~h

i
ki, l

, l ¼ 1, :::, Ki to all ~K þ 1 subsegments accord-
ing to constraints C15 and C16. 

Moreover, if there exists a mode i 2 M not in ~m, that is, 
if ~mk 6¼ i for all k ¼ 1, :::, ~K þ 1, we cannot get the corre-

sponding parameter ~h
ið Þ

k by Algorithm 4, as there is no data 

from mode i: In this case, we propose to estimate ~h
ið Þ

k in the 
full data stream Y1:T with a moving window of width w, as 
shown in Equation (14). The width w can be specified 
according to engineering knowledge. The number of param-
eter-change points for mode i is set to ~CðiÞ ¼ 0:

~h
ið Þ

k ¼ argmin
h ið Þ2H ið Þ

min
t¼1, :::, T−wþ1

C ið Þ Y t:tþw−1; h ið Þ
� �� �

: (14)  

After solving all Model P1.i0 for i 2 M, we merge their 

optimal solutions (~C ið Þ, ~sP, i
c

� �
, ~h

ið Þ
k

� �

) to obtain the optimal 

solution of Model P1. Specifically, let ~C ¼
PM

i¼1
~CðiÞ denote 

the total number of parameter-change points, let ~sP
1 , :::, ~sP

~C 

denote the ~C parameter-change points with ~sP
0 ¼ 0, ~sP

~Cþ1 ¼

T, and let ~h
P
c ¼

~h
1ð Þ

c , :::, ~h
Mð Þ

c

� �

denote the parameter list of 

segment c for c ¼ 1, :::, ~C þ 1: We define ~sP ¼ ~sP
1 , :::, ~sP

~C

� �

and ~h
P
¼ ~h

P
1 , :::, ~h

P
~Cþ1

� �

: Then, we update C, sP, hP with

C ¼ ~C, sP ¼ ~sP, hP ¼ ~h
P
: (15)  

3.2.3. Updating K, s, m 
To update K, s, m, we need to solve Model P given C ¼
~C, sP ¼ ~sP, hP ¼ ~h

P
, which is formulated as the following 

Model P2:

min
K, s, m, h, sP

XKþ1

k¼1
C mkð Þ Ysk−1þ1:sk ; h

mkð Þ

k

� �

þ bK, (P2) 

subject to C8 � C12 of Model P, and

sP
1 < ::: < sP

~C and sP
1 , :::, sP

~C

n o
� s1, :::, sKf g; (C17) 

h
ið Þ

k ¼
~h

ið Þ
c if sP

c−1 < sk � sP
c , for

k ¼ 1, :::, K þ 1; i 2 M; c ¼ 1, :::, ~C þ 1:
(C18) 

Here, sP
1 , :::, sP

~C are auxiliary decision variables denoting 
the ~C updated parameter-change points in s, which may 
differ from the given ~sP ¼ ~sP

1 , :::, ~sP
~C

� �
, as shown in con-

straint C17. The given parameter ~h
ið Þ

c , i 2 M is assigned to 
all subsegments in segment c for c ¼ 1, :::, ~C þ 1 by con-
straints C18.

Due to the combinatorial optimization structure of 
Model P2, we propose to solve Model P2 by an iterative 
algorithm outlined in Algorithm 5, where the constraints 
related to h and sP have been incorporated into the objective 

Table 2. Relationships, parameters, and cost functions of the five modes in the torque control process.

Mode Relationship Parameter Cost function

1. Starting mode Y2t ¼ h 1ð Þ þ �1 h 1ð Þ 2 H 1ð Þ ¼ 0f g
Pt2

t¼t1
Y2t − h 1ð Þ
� �2

2. Minimum speed mode Y1t ¼ h 2ð Þ þ �2 h 2ð Þ 2 H 2ð Þ ¼ 0:45, 0:60½ �
Pt2

t¼t1
Y1t − h 2ð Þ
� �2

3. MPPT mode Y2t ¼ h 3ð ÞY2
1t þ �3 h 3ð Þ 2 H 3ð Þ ¼ 0:45, 0:65½ �

Pt2
t¼t1

Y2t − h 3ð ÞY2
1t

� �2

4. Rated speed mode Y1t ¼ h 4ð Þ þ �4 h 4ð Þ 2 H 4ð Þ ¼ 0:90, 1:05½ �
Pt2

t¼t1
Y1t − h 4ð Þ
� �2

5. Rated power mode Y2t ¼ h 5ð ÞY−1
1t þ �5 h 5ð Þ 2 H 5ð Þ ¼ 0:80, 1:10½ �

Pt2
t¼t1

Y2t − h 5ð ÞY−1
1t

� �2
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function, sP ¼ sP
1 , :::, sP

~C

� �
has been merged into s, m as s ¼

s1, sP
1 , :::, sP

~C , s~Cþ1

� �
and m ¼ m1, :::, m~Cþ1ð Þ, and s, m are 

further divided into two groups:

1. sc, mc, c ¼ 1, :::, ~C þ 1 : The mode-transition points and 
the modes of subsegments in segment c:

2. sP ¼ sP
1 , :::, sP

~C

� �
: The updated parameter-change 

points in s:

Algorithm 5. An iterative algorithm for solving Model P2. 
Initialize sP ¼ ~sP:

Iteration until converge:  
Update sc, mc, c ¼ 1, :::, ~C þ 1 given sP:

Update sP given sc, mc, c ¼ 1, :::, ~C þ 1:
The details for updating sc, mc, c ¼ 1, :::, ~C þ 1 and updat-

ing sP are provided in Section S4 of the Supplementary 
Materials. The main ideas are summarized as follows:

1. Updating sc, mc, c ¼ 1, :::, ~C þ 1 : We first independently 
update sc, mc for each subsegment by the multi-PELT 
method and then merge them by dynamic 
programming.

2. Updating sP : For the simple case, we update a single sP
c 

by a line search. For the complex case, we simultan-
eously update n � 2 successive parameter-change points 
by dynamic programming.

3.3. Selection of the penalty weights

There are two penalty weights in the proposed model: b > 0 
is for the number of change points, and k > 0 is for the 

number of parameter-change points. We provide a simple 
approach for selecting b and k with labeled training data. In 
the following context, we denote the list of true (estimated) 
change points by s0 (ŝ), the list of true (estimated) param-
eter-change points by sP0 (ŝP), and the candidate sets of b 

and k by B and K: The two penalty weights can be selected 
by

b, k ¼ argmin
b2B, k2K

n
Dist s0, ŝð Þ þ Dist ŝ, s0ð Þ

þDist sP0, ŝPð Þ þ Dist ŝP, sP0ð Þ
o

,
(16) 

where Dist a, bð Þ ¼
P

i minj ai − bj
�
�

�
� measures the total dis-

tance of each ai in a to the nearest bj in b: In Equation 
(16), smaller Dist s0, ŝð Þ and Dist sP0, ŝPð Þ correspond to a 
lower missing detection rate, whereas smaller Dist ŝ, s0ð Þ and 
Dist ŝP, sP0ð Þ correspond to a lower false detection rate.

Note that a weighted combination of the four distances 
can also be used for penalty weights selection, and as dis-
cussed in Section S5 of the Supplementary Materials, using 
equal weights as in Equation (16) can achieve relatively bal-
anced and robust performance.

4. Simulation study and real case study

To verify the effectiveness of the proposed method, a simu-
lation study and a real case study are conducted based on 
the torque control process of a wind turbine. We introduce 
the basic settings in Section 4.1 and then present the results 
and analysis of the simulation study in Section 4.2 and the 
real case study in Section 4.3.

Figure 5. (a) Time series plot and (b) scatter plot of a simulated sample with C ¼ 4 and r ¼ 0:006: The legend “mode i ð#jÞ” in (b) represents data points from 
mode i with the jth parameter level.
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4.1. Basic settings of the torque control process

As introduced in Section 1, there are M ¼ 5 modes in the 
torque control process, with the mode set defined as M¼

1, 2, 3, 4, 5f g: The mode transition matrix is

A ¼

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

0

B
B
B
B
@

1

C
C
C
C
A
:

The scaled generator speed and torque at time t are 
denoted by Y1t and Y2t: Based on engineering knowledge of 
the wind turbine under study, the relationships, parameters, 
and cost functions of the five modes are summarized in 
Table 2, where �i � N 0, r2

i
� �

represents the random noise, 
h ið Þ denotes the parameter, and H ið Þ denotes the parameter 
space for i 2 M: The cost functions are set to the sum of 
squared errors. As shown in Table 2, the parameter of the 
starting mode is always h 1ð Þ ¼ 0, while the remaining four 
modes could change their parameters within an interval.

4.2. Simulation study

To systematically test our method, we consider nine simu-
lated cases and make comparisons with five state-of-the-art 
methods. The simulated data are generated with the follow-
ing specifications:

� The sample length is set to T ¼ 1000 with p ¼ 2 varia-
bles (i.e., generator speed and torque).

� The maximum number of change points is set to 
Kmax ¼ 19, and the possible positions of a change point 
are kT= Kmax þ 1ð Þ ¼ 50k for k ¼ 1, . . . , 19.

� To represent different sparsity of parameter-change 
points, we consider three levels of the number of param-
eter-change points as C 2 3, 4, 5f g.

� For the random noise ei � N 0, r2
i

� �
, i 2 M, we compute 

from real wind turbine data that 
r1 : r2 : r3 : r4 : r5 � 0:07 : 1 : 0:98 : 1:27 : 1:47, so we 
use r1 ¼ 0:07r, r2 ¼ r, r3 ¼ 0:98r, r4 ¼ 1:27r, and 
r5 ¼ 1:47r. To represent different noise intensities, we 
consider three levels as r 2 0:003, 0:006, 0:012f g, where 
r ¼ 0:003 represents the noise level in real data.

Thus, there are a total of nine different simulated cases 
(three levels of C � 3 levels of r). For each case, we ran-
domly generate 10 samples for tuning and 100 samples for 
testing. The data generation process is detailed in Section S6 
of the Supplementary Materials.

Figure 5 shows a simulated sample with C ¼ 4 and r ¼
0:006: For the time series plot in Figure 5(a), four param-
eter-change points are indicated by vertical dashed lines, 
and 15 mode-transition points are marked by vertical solid 
lines. As shown in the scatter plot in Figure 5(b), mode 1 
involves no parameter change, while the remaining four 
modes change their parameters exactly once in this simu-
lated sample.

We make comparisons with five alternative methods, as 
introduced below:

1. Toeplitz inverse covariance-based clustering method 
(TICC; Hallac et al., 2017; Zhao and Zhao 2022): This 
is a multimode process modeling and monitoring 
method that models each mode with a Markov random 
field.

2. Sequential Bayesian partition method (SBP; Wu et al., 
2019): This is a Bayesian multiple change point detec-
tion method detecting distributional changes with vary-
ing parameters.

Table 3. Results of the simulation study (boldface indicates the best, and “/” indicates not applicable).

C ¼ 3 C ¼ 4 C ¼ 5

Performance measure r 0.003 0.006 0.012 0.003 0.006 0.012 0.003 0.006 0.012

Precisioncp (%) Proposed 99.83 99.19 93.04 99.83 98.81 93.40 99.89 97.57 93.02
TICC 26.46 25.93 27.68 28.83 21.57 23.96 28.67 24.93 26.54
SBP 98.32 93.91 85.95 97.66 93.07 74.33 97.38 94.95 79.96
DSSL 24.13 21.37 21.95 21.81 22.11 21.81 21.03 22.61 23.41
MCP 96.45 94.91 83.86 98.40 93.75 85.04 98.50 95.44 84.20
RBM 40.06 35.42 29.00 38.20 32.20 28.08 37.29 32.49 25.96

Recallcp (%) Proposed 99.67 98.74 92.82 99.46 98.80 93.24 99.77 98.52 92.66
TICC 25.99 27.14 25.66 27.68 22.07 24.00 26.62 27.41 27.93
SBP 98.90 89.92 84.26 98.42 92.70 86.94 97.52 94.62 84.50
DSSL 30.57 46.04 60.94 76.72 66.04 48.02 46.11 69.74 66.16
MCP 99.06 94.70 85.53 98.77 93.83 86.87 98.18 95.22 85.34
RBM 93.53 90.18 80.43 94.49 84.84 84.17 93.50 89.00 70.93

Precisionp� cp (%) Proposed 99.17 97.17 83.51 98.85 97.75 91.45 97.11 94.75 95.65
Other / / / / / / / / /

Recallp� cp (%) Proposed 95.00 92.67 87.00 92.00 91.00 81.00 96.80 93.00 82.40
Other / / / / / / / / /

Mode accuracy (%) Proposed 98.02 97.48 95.87 98.12 97.49 96.09 98.10 97.56 96.02
TICC 74.66 73.38 75.42 74.07 72.84 74.13 73.96 73.82 73.35
RBM 88.34 85.52 81.29 88.48 84.83 82.75 87.40 86.01 78.98
Other / / / / / / / / /

Parameter RMSE 
(�10−2)

Proposed 0.039 0.082 0.164 0.056 0.084 0.185 0.044 0.088 0.204
RBM 0.239 0.381 0.701 0.350 0.635 0.724 0.314 0.465 0.928
Other / / / / / / / / /
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3. Dynamic sparse subspace learning method (DSSL; Xu 
et al., 2023): This is a non-Bayesian multiple change 
point detection method that detects changes in linear 
manifold structure, which achieves better performance 
than Zhang et al. (2021) that applies the fused LASSO 
penalty.

4. Mean and covariance change model with the PELT 
method (MCP; Killick et al., 2012; Wang and Zou, 
2023): This is a non-Bayesian multiple change point 
detection method that detects distributional changes 
with varying parameters. The implementation details 
are introduced in Section S7 of the Supplementary 
Materials.

5. Rule-based method (RBM): This method is commonly 
employed in the wind turbine industry. The “if-then” 
rules are designed based on a similar idea to the bin-
ning method (Ding, 2019). The details are provided in 
Section S8 of the Supplementary Materials.

The performance of each method is evaluated in three 
aspects. First, for the accuracy of change point detection, we 
consider the precision and recall of all change points:

Precisioncp ¼
1
K̂

XK̂

i¼1
I inf

j
ŝi − sj
�
�

�
� � s

� �
,

Recallcp ¼
1
K

XK

j¼1
I inf

i
ŝi − sj
�
�

�
� � s

� �
, 

where ŝ1, :::, ŝK̂ are the estimated change points, s1, :::, sK 
are the true change points, and s is the detection error 
bound, which is set to s ¼ 5: In practice, accurate detection 
of parameter-change points is especially important; thus, we 
also compute the precision and recall of all parameter- 
change points:

Precisionp� cp ¼
1
Ĉ

XĈ

i¼1
I inf

j
ŝP

i − sP
j

�
�
�

�
�
� � s

� �

,

Recallp� cp ¼
1
C

XC

j¼1
I inf

i
ŝP

i − sP
j

�
�
�

�
�
� � s

� �

, 

where ŝP
1 , :::, ŝP

Ĉ are the estimated parameter-change points, 
and sP

1 , :::, sP
C represents the true values.

Second, for the accuracy of mode identification, we com-
pute the mode accuracy as

Mode accuracy ¼
1
T

XT

t¼1
I m̂t ¼ mtð Þ, 

where m̂t is the estimated mode at time t, and mt is the 
true mode.

Third, for the accuracy of parameter estimation, we com-
pute the Root Mean Square Error (RMSE) of the estimated 
parameters for data points with truly identified modes:

Parameter RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1 I m̂t ¼ mtð Þ ĥt
m̂tð Þ

− h
mtð Þ

t

�
�
�

�
�
�

2

PT
t¼1 I m̂t ¼ mtð Þ

v
u
u
u
t , 

where ĥt
m̂tð Þ

is the estimated parameter at time t for mode 
m̂t , and h mtð Þ

t is the true value.
In the tuning process, the same 10 samples are used for 

each method. For our method, we select the two penalty 
weights by Equation (16) with b 2 0:0001, 0:0005, 0:001,f

0:005, 0:01, 0:05g and k 2 0:0001, 0:0005, 0:001, 0:005, 0:01,f

0:05, 0:1, 0:5g: For DSSL, the two penalty weights k1, k2 are 
selected using the approach provided by Xu et al. (2023). 
For the remaining four methods, as they do not solve for 
the parameter-change point, their tuning processes only 
consider the first two terms of Equation (16). Specifically, 

Figure 6. (a) Time series plot and (b) scatter plot of generator torque and speed for a real wind turbine during July 9–26, 2021. The two variables have been scaled 
by their rated values, the dashed line in (a) indicates the upgrade time, and data points during standby/downtime have been removed in (b).
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for TICC, we set the number of clusters as the number of 
modes in the torque control process, i.e., K ¼ 5, and select 
the window size w and two penalty weights k, b with 
w 2 1, 3, 5f g, k 2 0:0001, 0:001, 0:01, 0:1f g and b 2

10, 20, 30, 40, 50f g: For SBP, according to the recom-
mendation in Wu et al. (2019), we set p0 ¼ 0:1, 
l0 ¼ 0, 0ð Þ

0, W0 ¼ 0:0032�0I2 (I2 is a two-dimensional iden-
tity matrix), and select �0, c0 with �0 2 2, 5, 10, 15,f

20, 25, 30, 35, 40, 45g and c0 2 10−16, 10−13, 10−10,f

10−7, 10−4, 10−1g: For MCP, we select the penalty weight 
with b 2 25, 50, 75, 100, 125, 150, 175, 200, 350, 500f g: For 
RBM, we select the three thresholds with 
thre1 2 0:04, 0:05, 0:06f g, thre2 2 5, 6, 7f g, and thre3 2

3, 4, 5f g: After the tuning process, we use another 100 sam-
ples for testing, and the average performance measures are 
reported in Table 3.

As shown in Table 3, we horizontally observe that as the 
noise level r increases from 0.003 to 0.012, the performance 
of the proposed method worsens. One possible explanation 
is that with a higher noise level, the boundary between two 
adjacent modes becomes more obscure, which increases the 
difficulty of change detection. Unlike the noise level, the 
number of parameter-change points C seems to have min-
imal influence on performance.

On the other hand, by vertically comparing the results, 
we observe that our method outperforms the state-of-the-art 
methods in all cases. The poor performance of TICC and 
DSSL may be due to the mismatch of the data with their 
model assumptions. For TICC, the parameter of each mode 
is assumed to be fixed, whereas in our setting, the parameter 
can change to a new value. For DSSL, the assumed linear 
relationship may not well model the five modes of the tor-
que control process. With an increase in r, the performance 
of our method declines more slowly than SBP, MCP, and 
RBM, indicating that our method is more robust to higher 
noise levels. In terms of change point detection, only our 
method can detect parameter-change points, which is 
important for real applications. Because of this advantage, 
our method could more accurately estimate parameters. In 
addition, our method converges rapidly among all cases, 
with 3.06 iterations on average and seven iterations at most. 
Therefore, it is speculated that our method is more suitable 
for modeling multimode processes with mode transitions 
and parameter changes than the state-of-the-art methods.

4.3. Real case study

The SCADA data are derived from a 2 MW direct drive 
wind turbine, and the sampling interval is 8 seconds. During 
2021, this wind turbine experienced two control software 

upgrades. The first upgrade occurred on January 9, as shown 
in Figure 2. The second upgrade occurred on July 17 and is 
shown in Figure 6. We use data covering the first upgrade 
(2021/1/4 16:44:05� 2021/1/12 8:04:58) for tuning and use 
data covering the second upgrade (2021/7/9 15:30:18� 2021/ 
7/26 1:41:57) for testing.

For data preprocessing, we scale the generator speed and 
torque by their rated values and then remove data points 
collected during standby/downtime. After preprocessing and 
manual evaluation, there are 51,294 data points in the 
tuning data, with 2043 change points and four parameter- 
change points, and there are 148,872 data points in the test-
ing data, with 6213 change points and three parameter- 
change points.

The tuning process is the same as in the simulation 
study. For our method, the two penalty weights are selected 
as b ¼ 0:0001 and k ¼ 0:1, and it takes six iterations to 
converge. The testing results of the real case study are 
reported in Table 4.

From Table 4, we can see that our method achieves the 
best performance among the six methods for performance 
measures except for Recallcp: Although DSSL achieves the 
highest Recallcp of 90.26%, its false detection rate is very 
high, with a precision of only 36.34%, which is not accept-
able in practice. Moreover, our method accurately detects all 
parameter-change points, with 100% precision and 100% 
recall. Therefore, it is speculated that our method is more 
adaptive to real data than the state-of-the-art methods and 
has better comprehensive performance. In addition, we 
observe that Recallcp is relatively lower than Precisioncp for 
methods other than DSSL, which is different from the simu-
lation study. For possible causes, we discover that approxi-
mately half of all subsegments in the testing data are of 
length five or less, so the information contained in these 
subsegments is lower. As a result, it is relatively difficult to 
accurately distinguish these subsegments from adjacent sub-
segments, leading to a lower recall of all change points.

5. Conclusion

In this article, we propose a novel modeling framework for 
the offline change point detection problem of multimode 
processes, which simultaneously considers mode transitions 
and parameter changes. To improve interpretability, we 
incorporate engineering knowledge into the model by speci-
fying the number of modes, mode transition matrix, and 
cost functions. Then, we formulate the problem as a con-
strained optimization model with two penalty terms. The 
asymptotic property shows that under certain assumptions, 
the optimal solution of the model will converge to the 

Table 4. Results of the real case study (boldface indicates the best, and “/” indicates not applicable).

Precisioncp (%) Recallcp (%) Precisionp� cp (%) Recallp� cp (%) Mode accuracy (%) Parameter RMSE (�10−2)

Proposed 99.64 74.12 100.00 100.00 96.27 0.0327
TICC 52.16 25.62 / / 58.45 /
SBP 66.08 51.36 / / / /
DSSL 36.34 90.26 / / / /
MCP 61.85 41.43 / / / /
RBM 57.23 54.64 / / 86.50 0.2425
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ground truth as the sampling resolution goes to infinity. To 
solve the optimization model, we propose an iterative algo-
rithm and develop a multi-PELT method for initialization. 
Based on the torque control process of a wind turbine, both 
the simulation study and the real case study demonstrate 
the effectiveness of the proposed method for change point 
detection, mode identification, and parameter estimation.

This work can be extended in several directions. First, 
the proposed method does not consider the detailed transi-
tion process between two different modes, because it is 
nearly transient in our example of the torque control pro-
cess. However, for multimode processes that transition grad-
ually from one mode to another mode, the transition 
process should be characterized in detail. Second, except for 
mode transition availability, there might exist other con-
straints between two different modes, which can be consid-
ered to help refine the model. Last, online monitoring and 
diagnosis methods are worthy of further investigation for 
multimode processes with mode transitions and parameter 
changes.

Acknowledgments

The authors would like to thank the Department Editor, the Associate 
Editor and anonymous referees for their valuable and helpful com-
ments and suggestions.

Funding

This work was supported by the Key Program of the National Natural 
Science Foundation of China under Grant No. 71932006.

Notes on contributors

Jun Xu is currently a Ph.D. student in the Department of Industrial 
Engineering, Tsinghua University. He received his B.Eng. degree in 
Industrial Engineering from Tsinghua University in 2019. His research 
interests include modeling, monitoring and diagnosis of complex 
systems.

Jie Zhou is a senior engineer in Goldwind Science & Technology Co., 
Ltd, Beijing, China. His work focuses on wind turbine diagnosis and 
safety control. He is also currently working towards the D.Eng. degree 
in Industrial Engineering with Tsinghua University, Beijing, China. He 
received his B.S. and M.S. degrees in Electrical Engineering from 
Dalian University of Technology, Dalian, China.

Xiaofang Huang is a senior engineer. She received her master’s degree 
from Xidian University, Xi’an, China in 2006. She is currently a depart-
ment lead of the R&D Center of Goldwind Science & Technology 
Co.,Ltd, mainly engaged in the development and localization of wind 
turbine main control system software, as well as the development of 
intelligent control and protection technology of wind turbines and 
wind farms.

Kaibo Wang is professor in the Department of Industrial Engineering, 
Tsinghua University, jointly appointed by Vanke School of Public 
Health, Tsinghua University. He received his Ph.D. in Industrial 
Engineering and Engineering Management from Hong Kong 
University of Science and Technology, Hong Kong, in 2006. His 
research focuses on statistical quality control and data-driven system 
modeling, monitoring, diagnosis and control, with a special emphasis 
on the integration of engineering knowledge and statistical theories.

ORCID

Jun Xu http://orcid.org/0000-0001-9918-6148 
Kaibo Wang http://orcid.org/0000-0001-9888-4323 

Data availability statement

The participants of this study did not give written consent for their 
data to be shared publicly, so due to the nature of the research sup-
porting data is not available.

References

Burton, T., Jenkins, N., Bossanyi, E., Sharpe, D. and Graham, M. 
(2021) Wind Energy Handbook, third edition, John Wiley & Sons, 
Hoboken, NJ.

Chen, Z., Zhou, D., Zio, E., Xia, T. and Pan, E. (2023) Adaptive trans-
fer learning for multimode process monitoring and unsupervised 
anomaly detection in steam turbines. Reliability Engineering and 
System Safety, 234, 109162.

Ding, Y. (2019) Data Science for Wind Energy, CRC Press, Boca Raton, 
FL.

Ding, Y., Kumar, N., Prakash, A., Kio, A.E., Liu, X., Liu, L. and Li, Q. 
(2021) A case study of space-time performance comparison of wind 
turbines on a wind farm. Renewable Energy, 171, 735–746.

Du, W., Fan, Y. and Zhang, Y. (2017) Multimode process monitoring 
based on data-driven method. Journal of the Franklin Institute, 
354(6), 2613–2627.

Haghani, A., Krueger, M., Jeinsch, T., Ding, S.X. and Engel, P. (2015) 
Data-driven multimode fault detection for wind energy conversion 
systems. IFAC-PapersOnLine, 48(21), 633–638.

Hallac, D., Vare, S., Boyd, S. and Leskovec, J. (2017) Toeplitz inverse 
covariance-based clustering of multivariate time series data, in 
Proceedings of the 23rd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD ’17), ACM, New York, 
NY, pp. 215–223.

Jackson, B., Scargle, J.D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, 
P., Gwin, E., Sangtrakulcharoen, P., Tan, L. and Tsai, T.T. (2005) 
An algorithm for optimal partitioning of data on an interval. IEEE 
Signal Processing Letters, 12(2), 105–108.

Jin, H., Yin, G., Yuan, B. and Jiang, F. (2022) Bayesian hierarchical 
model for change point detection in multivariate sequences. 
Technometrics, 64(2), 177–186.

Jin, R. and Liu, K. (2013) Multimode variation modeling and process 
monitoring for serial-parallel multistage manufacturing processes. 
IIE Transactions, 45(6), 617–629.

Juodakis, J. and Marsland, S. (2023) Epidemic changepoint detection in 
the presence of nuisance changes. Statistical Papers, 64, 17–39.

Killick, R., Fearnhead, P. and Eckley, I.A. (2012) Optimal detection of 
changepoints with a linear computational cost. Journal of the 
American Statistical Association, 107(500), 1590–1598.

Ko, S.I.M., Chong, T.T.L. and Ghosh, P. (2015) Dirichlet process hid-
den Markov multiple change-point model. Bayesian Analysis, 10(2), 
275–296.

Lee, G., Ding, Y., Genton, M.G. and Xie, L. (2015) Power curve estima-
tion with multivariate environmental factors for inland and offshore 
wind farms. Journal of the American Statistical Association, 
110(509), 56–67.

Prakash, A., Tuo, R. and Ding, Y. (2022) Gaussian process-aided func-
tion comparison using noisy scattered data. Technometrics, 64(1), 
92–102.

Prakash, A., Tuo, R. and Ding, Y. (2023) The temporal overfitting 
problem with applications in wind power curve modeling. 
Technometrics, 65(1), 70–82.

Qui~nones-Grueiro, M., Prieto-Moreno, A., Verde, C. and Llanes- 
Santiago, O. (2019) Data-driven monitoring of multimode 

IISE TRANSACTIONS 15



continuous processes: A review. Chemometrics and Intelligent 
Laboratory Systems, 189, 56–71.

Shi, J. (2023) In-process quality improvement: Concepts, methodolo-
gies, and applications. IISE Transactions, 55(1), 2–21.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005) 
Sparsity and smoothness via the fused lasso. Journal of the Royal 
Statistical Society, Series B, 67, 91–108.

Truong, C., Oudre, L. and Vayatis, N. (2020) Selective review of offline 
change point detection methods. Signal Processing, 167, 107299.

Wang, A., Chang, T.-S. and Shi, J. (2022) Multiple event identification 
and characterization by retrospective analysis of structured data 
streams. IISE Transactions, 54(9), 908–921.

Wang, F., Tan, S. and Shi, H. (2015) Hidden Markov model-based 
approach for multimode process monitoring. Chemometrics and 
Intelligent Laboratory Systems, 148, 51–59.

Wang, G. and Zou, C. (2023) cpss: An R package for change-point 
detection by sample-splitting methods. Journal of Quality 
Technology, 55(1), 61–74.

Wu, J., Chen, Y. and Zhou, S. (2016) Online detection of steady-state 
operation using a multiple-change-point model and exact Bayesian 
inference. IIE Transactions, 48(7), 599–613.

Wu, J., Chen, Y., Zhou, S. and Li, X. (2016) Online steady-state detec-
tion for process control using multiple change-point models and 
particle filters. IEEE Transactions on Automation Science and 
Engineering, 13(2), 688–700.

Wu, J., Xu, H., Zhang, C. and Yuan, Y. (2019) A sequential Bayesian 
partitioning approach for online steady-state detection of multivari-
ate systems. IEEE Transactions on Automation Science and 
Engineering, 16(4), 1882–1895.

Wu, Z., Li, Y., Tsung, F. and Pan, E. (2023) Real-time monitoring and 
diagnosis scheme for IoT-enabled devices using multivariate SPC 
techniques. IISE Transactions, 55(4), 348–362.

Xie, X. and Shi, H. (2012) Multimode process monitoring based on 
fuzzy C-means in locality preserving projection subspace. Chinese 
Journal of Chemical Engineering, 20(6), 1174–1179.

Xie, Y. (2020) Double-weighted neighborhood standardization method 
with applications to multimode-process fault detection. Journal of 
Intelligent & Fuzzy Systems, 39(1), 1243–1256.

Xu, R., Wu, J., Yue, X. and Li, Y. (2023) Online structural change- 
point detection of high-dimensional streaming data via dynamic 
sparse subspace learning. Technometrics, 65(1), 19–32.

Xu, X., Ding, J., Liu, Q. and Chai, T. (2021) A novel multi-manifold 
joint projections model for multimode process monitoring. IEEE 
Transactions on Industrial Informatics, 17(9), 5961–5970.

Xu, X., Qin, F., Zhao, W., Xu, D., Wang, X. and Yang, X. (2022) 
Anomaly detection with GRU based Bi-autoencoder for industrial 
multimode process. International Journal of Control, Automation 
and Systems, 20(6), 1827–1840.

Yang, J., Zhang, M., Shi, H. and Tan, S. (2017) Dynamic learning on 
the manifold with constrained time information and its application 
for dynamic process monitoring. Chemometrics and Intelligent 
Laboratory Systems, 167, 179–189.

Yin, M., Li, W., Chung, C.Y., Zhou, L., Chen, Z. and Zou, Y. (2017) 
Optimal torque control based on effective tracking range for max-
imum power point tracking of wind turbines under varying wind 
conditions. IET Renewable Power Generation, 11(4), 501–510.

Yu, F., Liu, J. and Liu, D. (2022) Multimode process monitoring based 
on modified density peak clustering and parallel variational autoen-
coder. Mathematics, 10(14), 2526.

Zhang, C., Yan, H., Lee, S. and Shi, J. (2021) Dynamic multivariate 
functional data modeling via sparse subspace learning. 
Technometrics, 63, 370–383.

Zhang, J., Zhou, D. and Chen, M. (2023) Self-learning sparse PCA for 
multimode process monitoring. IEEE Transactions on Industrial 
Informatics, 19(1), 29–39.

Zhao, Y. and Zhao, C. (2022) Dynamic multivariate threshold opti-
mization and alarming for nonstationary processes subject to vary-
ing conditions. Control Engineering Practice, 124, 105180.

Zou, C., Yin, G., Feng, L. and Wang, Z. (2014) Nonparametric max-
imum likelihood approach to multiple change-point problems. 
Annals of Statistics, 42(3), 970–1002.

16 J. XU ET AL.


	Change point detection of multimode processes considering both mode transitions and parameter changes
	Abstract
	Introduction
	Literature review
	Multimode process modeling and monitoring
	Multiple change point detection


	Problem formulation
	Basic settings from engineering knowledge
	Definition of a change point and the related decision variables
	Optimization model for CPD-MMP

	Optimization method
	An equivalent formulation of the optimization model
	Solution algorithm for CPD-MMP
	Initializing K,τ,m
	Updating C,τP,θP
	Updating K,τ,m

	Selection of the penalty weights

	Simulation study and real case study
	Basic settings of the torque control process
	Simulation study
	Real case study

	Conclusion
	Acknowledgments
	Funding
	Orcid
	References


