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Multi-node system modeling and monitoring with extended directed
graphical models

Dengyu Lia and Kaibo Wanga,b

aDepartment of Industrial Engineering, Tsinghua University, Beijing, China; bVanke School of Public Health, Tsinghua University,
Beijing, China

ABSTRACT
Complex manufacturing systems usually contain a large number of variables. Dominated by
certain engineering mechanisms, these variables show complicated relationships that cannot
be effectively expressed by simple correlation matrices or functions, thus increasing the diffi-
culty of modeling and monitoring these systems. The directed graphical model (DGM) has
been used as a flexible tool for describing the relationship among variables in complex sys-
tems. However, the DGM treats all variables equally and fails to consider the structural infor-
mation among them that usually exists. To address this problem, an extended directed
graphical model (EDGM) and related parameter estimation, monitoring, and structure learn-
ing methods are proposed in this work. Taking prior engineering knowledge into consider-
ation, the EDGM assigns variables into groups and uses groups of variables as nodes in the
graph model. By adding hidden state variables to each node, the EDGM can effectively rep-
resent the relationship within and between nodes and provide promising monitoring per-
formance. Numerical experiments and a real-world case study of the monocrystalline silicon
growth process are performed to verify the effectiveness of the proposed methods.

KEYWORDS
directed graphical models;
EWMA control charts; graph
structure learning;
penalized loss function;
quality prediction

1. Introduction

Due to the quick development of design, manufactur-
ing, and sensing techniques, a complex system usually
contains a large number of components, which are
represented by multiple variables in an industrial big-
data environment. These types of variables are essen-
tial for characterizing system status, reflecting quality
performance, and expressing process changes.
Dominated by certain engineering mechanisms, these
variables usually have complicated relationships, and
it is fundamentally important to identify the complex
relationship among the variables to facilitate quality
monitoring and improvement practice. There are two
major challenges in modeling these kinds of complex
systems: (1) the number of variables in a system can
be large; (2) the variation propagation mechanism and
relationships among the variables are complicated. A
proper model for capturing the relationship in a com-
plex system is critical in quality engineering, and thus,
has drawn much attention in the literature.

Stream of variation (SoV) has been one important
way to model the variation propagation mechanism in
multistage manufacturing systems (MMSs) (Shi 2006).

In an MMS, variables from the same stage are parallel,
while variables from different stages have a sequential
structure; a state-space model is used to connect mul-
tiple stages together and explicitly show how process
variables, stage states, and quality outputs affect each
other. A sequential manufacturing process composed
of N stages, which are numbered in ascending order
is considered. A two-level linear state-space model is
given to model the process quality (Huang and Shi
2004) as follows:

yk, i ¼ akxk, i þ �k, j
xk, i ¼ bkxk�1, i þ rk, j

[1]

where k ¼ 1, :::,N represents the stages, i ¼ 1, 2, :::
represents the product index, and yk, i and xk, i repre-
sent the observable quality measurement and unob-
servable quality characteristic, respectively. The
coefficients ak and ck are usually estimated by certain
engineering knowledge (Ding, Ceglarek, and Shi
2002). By introducing the state-space method, the SoV
model effectively models variation propagation in
sequential or parallel-sequential structures.

When engineering knowledge and the physical law
of the processes are not perfectly known, some data-
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driven methods, such as regression models (Deng and
Jin 2015; Sun et al. 2016; Yan et al. 2021) and neural
network models (Bukkapatnam et al. 2006), have also
proven to be effective. For example, for MMSs, data-
driven methods estimate quality outputs by using
information from all variables from upstreaming
stages as follows:

yk, i ¼ fk xj, if gkj¼1, yj, if gk�1j¼1 ; hk
� �

[2]

where yk, i and xk, i have similar meanings to Eq. [1]
and hk is the parameter set that needs to be estimated
from observable data. Specific forms of fkð�Þ separate
the data-driven methods into different models, where
linear regression models take linear forms of fks while
neural networks use hidden layers to model compli-
cated relationships between inputs and outputs. With
more accurate modeling methods, monitoring techni-
ques also have greater power detecting out-of-control
situations based on the estimated relationships
between variables.

Compared to the aforementioned SoV and data-
driven methods, a graphical model can provide a flex-
ible and suitable expression of the relationship
between essential quality outputs (G�omez, Paynabar,
and Pacella 2021; Sun, Huang, and Jin 2017) from sys-
tems with complex structures. To illustrate the prob-
abilistic representation of complex systems, directed
graphical models (DGMs) have proven to be an effect-
ive and commonly used method (Wang et al. 2021). A
directed graphical model usually contains a set of
nodes N , and a set of directed edges, that is, an arc
set, A: An arc from one node to another indicates the
existence of conditional dependence behind these two
nodes. By assuming arc function forms, DGMs are
able to describe a complex joint distribution of varia-
bles in systems using multivariate conditional distribu-
tion with specific graph structures. More details about
DGMs can be found in previous work (de Campos
1998; Heckerman, Geiger, and Chickering 1994).

Although they provide a flexible expression of sys-
tems with complex structures, existing graphical mod-
els are limited in that one node represents only one
physically observable variable, and all variables are
equally and separately treated, with each one acting as
one node in the graph. However, it is easily under-
stood that the variables’ behavior is driven by the
engineering mechanism behind them. A system con-
sists of multiple subsystems, and each subsystem is an
integration of multiple components. Naturally, varia-
bles in a complex system can form different groups;
the importance of the variables is different to the sys-
tem, and the mechanisms that dominate the variables

in the same group and variables in different groups
can be different. Therefore, a model that can take this
information into consideration is important for effect-
ive process modeling and monitoring.

A motivating example of the monocrystalline sili-
con ingot growth process is considered. Figure 1
shows a schematic drawing of this silicon growth pro-
cess in the Czochralski (CZ) technique, by which
more than 90 percent of silicon wafers in markets are
produced (Mohamed Ariff, Hashmi, and Brabazon
2018). After melting the polycrystalline silicon into
the crucible and dipping a crystallographically ori-
ented monocrystalline silicon seed into the melt, the
seed crystal and the crucible both rotated at specific
speed levels to first increase the ingot diameter and
turn to isodiametric growth (Seigneur et al. 2016).
Numerous sensors are placed into the crucible to col-
lect real-time observations of variables, such as tem-
perature, velocity, rotation, and pulling speeds of the
ingot. These related variables can be divided into sev-
eral subsystems, such as mechanics, thermal field,
ingots, and gas supply, in which the variables can
form a graph structure (Drouiche et al. 2015; Zhang
et al. 2011). In addition, variables can also be classi-
fied by how they originated: (1) setting variables are
those which can be changed automatically or artifi-
cially during the growth process; (2) measured varia-
bles are those which cannot be changed and contain
most of the essential quality variables, such as ingot
diameter measurement; (3) derivative variables are
those whose information is contained in the former
two groups of variables and can be directly calculated

Figure 1. A simplified view of the CZ method as the mono-
crystalline silicon grows from the melt.
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by them similarly to taking the difference of two
recent observations from a specific variable. It is
essential to estimate and monitor the relationship
between variables because even small shifts from the
controlled state can affect the quality of the whole
ingot at a great cost. However, by taking the trad-
itional settings in DGMs that one node represents
only one variable, the efficiency and accuracy of mod-
eling and monitoring cannot be assured because of
the great number of variables and neglection of prior
expert knowledge. Therefore, a graph model that can
simplify the variable structure while keeping the
important relationship among variables is needed to
address this problem by considering a subsystem as a
node containing several variables.

In this article, to address the aforementioned prob-
lems, a novel directed graphical model is proposed,
namely, the extended directed graphical model (EDGM).
For real-world cases, such as the monocrystalline silicon
growth process, with a large number of sensors and
complex relationships between variables, the proposed
EDGM methods have advantages over the existing meth-
odologies in the following aspects: (1) they utilize
directed graphical models to depict relationships between
variables with flexibility structures of complex systems;
(2) they separate variables into groups and consider one
group as a node in a graph structure to decrease the
complexity of the graph structure; (3) they use a hidden
state layer to realize variable selection and model the
functional relationship between the nodes; (4) they
jointly model multiple essential quality outputs with a
respective monitoring and diagnostic framework. In this
work, an adjusted structure learning method is also pro-
posed to extract the graph structure, and a monitoring
and diagnosis framework is presented to capture system
changes and help improve quality. This work is inspired
by Yan et al.’s work, where they proposed a deep multi-
task learning method to predict quality outputs in an
MMS (Yan et al. 2021). Similar to their work, hidden
state vectors are introduced in the proposed work, and
parameters are estimated by a stochastic proximal gradi-
ent descent method. The main difference is that in this
work we have broadened the influential structure of vari-
ables from sequential to graphical, which suits complex
manufacturing systems with more flexibility. We have
also developed a structure learning method in case the
graphical structure is unknown.

The remainder of this article is organized as fol-
lows. In Section 2, the proposed model’s respective
estimation, monitoring, and structure learning proce-
dures are presented in detail. In Sections 3 and 4,
examples, including numerical experiments and a

real-world application to the monocrystalline silicon
growth process, are provided to verify the efficiency
of the proposed model. Finally, summaries and discus-
sions about the model are presented in Section 5.

2. Model

In this section, problem settings are first formulated
in Section 2.1, and then the proposed extended
directed graphical model is introduced in Section 2.2.
Parameter estimation steps are shown in Section 2.3,
while the monitoring and diagnosis framework is
introduced in Section 2.4. Finally, the learning steps
of the graph structure are discussed in Section 2.5.

2.1. Problem formulation

A complex system that consists of a subsystem set or
component set, N ¼ f1, 2, :::,Kg, where K is the num-
ber of subsystems, that is, the number of nodes in the
graph structure is considered. In this article, subsystems,
components, and nodes in graphical models refer to the
same meaning. Each subsystem contains multiple varia-
bles that can be separated into two groups: input varia-
bles and output variables. In real-world applications, the
rules for separating the variables can be adjusted flex-
ibly, for example, in-process sensing variables are con-
sidered as inputs and essential quality sensing variables
as outputs. Taking the example of the monocrystalline
silicon growth process, the most important quality vari-
able is the silicon ingots’ diameter and workers would
check it during the whole process to assure the ingot
has an ideal shape. Besides, there are many other varia-
bles that would influence the diameter, such as tem-
perature in the melt, rolling and pulling speed of the
seed. In this case, the ingot’s diameter can be consid-
ered as the quality sensing variable, that is, output vari-
able, and temperature, pulling, and rolling speed can be
considered as in-processing sensing variables, that is,
input variables.

We denote xk ¼ fxk1, xk2, :::, xknxkg and yk ¼
fyk1, yk2, :::, yknykg as the input vector and output vec-
tor from the kth node, respectively, where nxk and nyk
are the number of input variables and output varia-
bles, respectively. The subsystems interact with each
other and form a graph structure G, which contains a
node set and an arc set, G ¼ fN ,Ag, where N ¼
f1, 2, :::,Kg and the elements in A are node pairs.
i, jð Þ 2 A if an arc from node i to node j exists. PaðkÞ
is denoted as the parent node set of node k, that is,
Pa kð Þ ¼ fj 2 N j j, kð Þ 2 Ag: In this article, we further
assume that there is no directed cycle in the graph,
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which is a directed acyclic graph (DAG). Based on
these problem settings, the goal of this article is to
model the relationship between nodes that are
attached to the arcs and predict the output variables
y1, y2, :::, yKf g based on the input variables
x1, x2, :::, xKf g and the functional relationships. DGM

learning often includes two parts: estimating the rela-
tionship attached to the arcs between the nodes and
learning the graph structure, that is, determining
whether there is an arc between any pair of nodes. In
Sections 2.2 and 2.3, we assume that the graph struc-
ture A is known and only estimate the relationship
between node pairs in A: In Section 2.5, this assump-
tion is relaxed so that we need to decide the elements
in A and estimate the respective relationship.

2.2. The extended directed graphical model

To realize the variable selection of input variables and
the relationship between nodes, we introduce the hid-
den state vector hk 2 R

nh into the proposed EDGM,
which represents the state of the subsystems. A simple
instance of the EDGM is shown in Figure 2, which
contains three nodes and two arcs, that
is, Geg ¼ N eg ¼ 1, 2, 3f g,Aeg ¼ 1, 2ð Þ, 1, 3ð Þ� �� �

:

As shown in the instance, we make the following
assumptions regarding the proposed EDGM: (1) the
graph consists of several nodes and N is the node
set. It means that the whole system can be divided
into several subsystems in practice, which is very
common in a complex system. In the monocrystalline
silicon growth process, the whole system can be div-
ided into subsystems of heater, pressure field, and gas
control, etc.; (2) for each node k 2 N , it consists of
three parts: the input part xk, the hidden state part
hk and the output part yk: In practice, variables from
a subsystem can be grouped as essential quality varia-
bles, that is, output variables, and process variables

that might impact on the outputs, that is, input varia-
bles. The hidden state variables can be considered as
the representation of the conditions of the subsys-
tems, which cannot be directly observed; (3) the rela-
tionship within node k includes the functional
relationship from xk to hk and from hk to yk, which
implies that the impact from inputs to outputs is real-
ized by the hidden state variables. This assumption
describes the real-world situation where the hidden
condition of the subsystems is a reflection on the
process variables and the hidden conditions decide
whether the quality outputs are under control; (4) the
relationship between nodes (if there is an arc between
them) is realized between the hidden state variables
of the two nodes. This assumption is based on the
situation where not all input variables can impact
outputs from other subsystems and only conditions
or certain combinations of input variables can affect
the other subsystems’ conditions. According to the
assumptions mentioned above, the relationship
between input variables xj and output variables yk
consists of three steps: firstly, xj impacts on hj; sec-
ondly, hj impacts on hk if there exists a path from j
to k according to the graphical structure; thirdly, hk
impacts on yk: If there is no path from j to k, then xj
has no impact on yk:

In this article, two types of parametric functions
are assumed to model the relationship within each
node and between nodes, respectively. The transmis-
sion functions describe how the hidden state vectors
hk are influenced, which is given as follows:

hk ¼ fk xk, hj
� �

j2Pa kð Þ; h
h
k

� �
þ zk, k 2 N [3]

where hhk is the model parameters from transmission
functions and zk is the transmission noise vector. On
the other hand, the emission functions describe how
the output variables yk are influenced by the hidden
state vector hk, which is given as follows:

Figure 2. Graph structure and relationship between the nodes of the proposed model.
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yk ¼ gk hk; h
g
k

� �þ �k [4]

where h
g
k is the model parameters from emission func-

tions and �k is the emission noise vector. According
to the two types of functions, output variables are
only directly affected by the hidden state vectors of
the same node, while the hidden state vectors are
affected by the inputs of the same node and hidden
state vectors from the parent nodes. Usually, nxk �
nh, and we assume all hidden state vectors hks to
have the same dimensions to realize variable selection
and dimensional reduction of the input variables. For
simplicity, we first assume linear forms of the two
types of functions and normally distributed noises.
Then, the model Eqs. [3] and [4] can be rewritten in
linear forms as follows:

hk ¼ fk xk, hj
� �

j2Pa kð Þ; h
h
k

� �
þ zk

¼Wkxk þ
X

j2Pa kð Þ
U jkhj þ zk

[5]

yk ¼ gk hk; h
g
k

� �þ �k ¼ Vkhk þ �k [6]

where hhk ¼ Wk, U jkf gj2Pa kð Þ
n o

and h
g
k ¼ fVkg; zk �

Nð0,r2zIzÞ and �k � N 0, r2�I�
� �

; Iz and I� are identity
matrices with respective dimensions. Based on the
mathematical descriptions above, the goal of the
model is: (1) estimating the model’s parameters

hhk , h
g
k

n o
k2N

given the available dataset D ¼ X ,Yf g,
where X ¼ Xif gNi¼1, Y ¼ Y if gNi¼1 and N is the num-

ber of observations. Xi ¼ xTi1, x
T
i2, :::, x

T
iK

� �T
and Y i ¼

yTi1, y
T
i2, :::, y

T
iK

� �T
are the respective input vector and

output vector from all nodes of the i th observation,

i ¼ 1, :::,N; (2) constructing a monitoring framework

based on the model and providing out-of-control

(OC) signals when a shift occurs; and (3) developing

a structure learning and parameter estimation method

when PaðjÞ is unknown. The realization of these goals

will be explained in the following subsections.

2.3. Estimation of model parameters

The objective function for optimizing the relevant
model parameters is inspired by the previous work
and is given as follows (Yan et al. 2021):

minHQ Hð Þ ¼ L Hð Þ þ R Hð Þ [7]

where H ¼ hhk , h
g
k

n o
k2N

is the parameter set. Eq. [7]
contains the prediction error loss term L Hð Þ and the
regularization term for parameters, R Hð Þ: For the

loss function L Hð Þ, the specific form is listed in Eq.
[8] which is derived from the model assumptions.

L Hð Þ ¼ L H;X ,Yð Þ ¼ �
XN
i¼1

XK
k¼1

log P yikjhik;H
� �

[8]

where the loss function is in the form of the negative
joint log-likelihood functions of output variables,
given the model parameter set H and hidden state
vectors hik s. Furthermore, we assume that the output
variables in a node are conditionally independent of
each other given the hidden state. Therefore, Eq. [6]
can be rewritten as follows:

L Hð Þ ¼ L H;X ,Yð Þ ¼ �
XN
i¼1

XK
k¼1

log P yikjhik;H
� �

¼ �
XN
i¼1

XK
k¼1

Xny, k
j¼1

log P yikjjhik;H
� � [9]

eik ¼ yik � gkðhik;HÞ is denoted as the prediction
error vector and obtains the following:

L H;X ,Yð Þ ¼ �
XN
i¼1

XK
k¼1

log P yikjhik;H
� �

/
XN
i¼1

XK
k¼1

Lk eik;Hð Þ
[10]

where Lk eik;Hð Þ is the negative log-likelihood func-
tion of the error vectors. There are multiple choices of
the forms of Lk eik;Hð Þ in existing works, such as
squared loss (Bukkapatnam et al. 2006) and Huber
loss (Liu, Zhu, and Ma 2022). Usually, the choice is
based on the assumed output distribution. In this
article, the squared loss is selected for the Gaussian
distributed noises as follows:

Lk eik;Hð Þ ¼ keikk2 ¼
Xny, k
j¼1

e2ikj [11]

When the graph structure A is known, the regular-
ization function is listed in Eq. [10] as follows:

R Hð Þ ¼ kR
2
kHk2 [12]

where k � k2 is the L2 penalty for matrices, that is,
sum of squares of all elements in the parameter set.
When A is unknown, some adjustments are added to
the regularization function, which is discussed in
Section 2.5.

The stochastic proximal gradient algorithm is
selected as the optimization step for Eq. [5]. Without
loss of generality, we assume the size of a minibatch
is 1 in the following updating equations, that is, Dm ¼
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fx, yg: For convenience, Cðka, kbÞ is denoted as the set
of all possible chains from node ka to node kb: A
chain c ¼ ka, kl � � � , km, kbð Þ 2 C ka, kbð Þ if all arcs in
sequentially paired nodes of c exist in A, that is,
ka, klð Þ, :::, km, kbð Þ� � � A: Given c 2 C ka, kbð Þ,

dcðka, kbÞ is denoted as the gradient chain of hidden
state vectors from node ka to node kb according to c
as follows:

dc ka, kbð Þ ¼ @hkb
@hkm

� � � � � @hkl
@hka

[13]

AcðkÞ is denoted as the set of nodes that are influ-
enced by the parameters of node k, that is, Ac kð Þ ¼
l 2 N , l 6¼ kjC k, lð Þ 6¼ ;� � [ fkg: Note that we set k 2

Ac kð Þ, 8k 2 N and definite dc k, kð Þ ¼ Idh , jC k, kð Þj ¼
1 as a special case for convenience. Based on these
notations, the gradient from L Hð Þ to parameters H
can be given in Eqs. [14] and [15].

For transmission function parameters:

@

@hhk
L x, ;Hð Þ ¼ �

X
l2N

@

@hhk
log P yljhl, hgl

� �
¼ � @hk

@hhk

X
l2AcðkÞ

@

@hl
log P yljhl, hgl

� �� 	

¼ @hk
@hhk

X
l2Ac kð Þ

X
c2C k, lð Þ

dch k, lð Þ

 �

� 2 gk hk, h
g
k

� �� yk
� � � @gk hk, h

g
k

� �
@hk

8<:
9=;
[14]

For emission function parameters:

@

@h
g
k

L x, y;Hð Þ ¼ � @

@h
g
k

log P ykjhk, hgk
� � ¼ 2 gk hk, h

g
k

� �� yk
� � � @gk hk, h

g
k

� �
@h

g
k

[15]

On the other hand, the gradient from R Hð Þ to
parameters H is given as follows:

@

@H
R Hð Þ ¼ kRH [16]

In this work, the stochastic proximal gradient algo-
rithm is used to estimate the parameter set H, where
the updating equation for parameters from iteration
ðs� 1Þ to s is shown in Eq. [17] as follows:

H sð Þ ¼ H s�1ð Þ � g
@

@H
L x, y;Hð Þ þ @

@H
R Hð Þ


 �
jH ¼ H s�1ð Þ

� 	
[17]

where g is the learning rate. With an initial value of
parameters, H 0ð Þ and specific forms of functions,
the parameters can be optimized by recursively cal-
culating Eq. [17] based on Eqs. [14] to [16] until
convergence. In each iteration, we update all the
parameters in H by the updating equation, if h 2 H
is from the transmission parameter set, that is, h 2
hh, we use the updating equation replacing

@
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [14] and [16] in
the manuscript, respectively. On the other hand, if
h 2 H is from the emission parameter set, that is,
h 2 hg , we use the updating equation replacing
@
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [15] and [16] in
the manuscript, respectively. Detailed steps of the
algorithm is summarized in Algorithm 1.

Algorithm 1: Stochastic proximal gradient descent
algorithm for parameter estimation

Input: The training set xik, yikf gKk¼1
n oNtrain

i¼1
; the valid-

ation set xik, yikf gKk¼1
n oNvalid

i¼1
; the tuning set for kR, KR;

the learning rate g; the recursion limit parameter n

Output: Estimated parameter set Ĥ ¼ ĥ
h
k , ĥ

g
k

n oK

k¼1
(1) Initialize Hð0Þ ¼ 0
(2) for kR 2 KR

(3) Set s ¼ 0,H 0ð Þ kRð Þ ¼ Hð0Þ

(4) do
(5) for k ¼ f1, :::,Kg
(6) Randomly select i 2 f1, :::,Ntraing and
get xik, yikf g
(7) for h 2 H sð Þ kRð Þ
(8) if h 2 hh

sð ÞðkÞ :
(9) Update hðsþ1Þ kRð Þ by Eq. [17] replacing
@
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [14] and [16]
(10) else
(11) Update hðsþ1Þ kRð Þ by Eq. [17] replacing
@
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [15] and [16]
(12) end if
(13) end for
(14) end for
(15) Set s sþ 1
(16) until kH sð Þ kRð Þ �H s�1ð Þ kRð Þk2 < n
(17) end do
(18) Set Ĥ kRð Þ ¼ H sð Þ kRð Þ
(19) Calculate RMSE using parameter Ĥ kRð Þ in valid-
ation set getting RMSEðkRÞ
(20) end for
(21) The final tuning parameter is set to
be k̂R ¼ argminkR2KR RMSEðkRÞ
(22) The final estimated parameter set is set to
be Ĥ ¼ Ĥ k̂R

� �
Although the global optimum property is not assured
in this algorithm, restarting with another randomized
initial value will considerably increase its effectiveness
in real cases when validation accuracy is unsatisfactory
(Yan et al. 2021). Note that the estimation steps [7] to

[17] have no limitations on the function forms hk ¼

JOURNAL OF QUALITY TECHNOLOGY 43



fk xk, hj
� �

j2Pa kð Þ; h
h
k

� �
and yk ¼ gk hk; h

g
k

� �
: Although a

linear assumption is given in this article for EDGM in
Eqs. [5] and [6], nonlinear extensions can be easily
made by changing the specific forms of fkð�Þ
and gkð�Þ:

2.4. Monitoring and diagnosis framework of the
EDGM

In this subsection, a phase II monitoring method and
a diagnosis framework are introduced based on the
estimated model parameters and the known graph
G ¼ fN ,Ag: In the EDGM, it is assumed that the
inputs and outputs xks and yks can be observed dir-
ectly, and many existing control charts have proven
to be effective when a mean shift occurs in some of
the input and output variables, such as CUSUM and
multivariate exponentially weighted moving average
(MEWMA) methods. In this article, we mainly focus
on how to effectively monitor the relationship change
in the EDGM, where the input variables might dis-
tribute the same when the system is out of control
(OC) with no significant shifts in output variables.
The OC model of the EDGM only differs from the
in-control (IC) model in hidden state vectors by
assuming that a mean shift occurs in transmission
functions, which is given as follows if a shift occurs
at node kOC:

hOCk ¼ f OCk xk, hj
� �

j2Pa kð Þ; hk
� �

¼Wkxk þ
X

j2Pa kð Þ
U jkhj þ zk þ sk

[18]

where sk ¼ d1k is the shift vector with shift scale d:
The monitoring method in this article is inspired by
the directional multivariate exponentially weighted
moving average (DMEWMA) method, which aggre-
gates the shift scale by taking advantage of the
sequentially affected structure of multistage manufac-
turing systems (Zou and Tsung 2008). ApaðkÞ is
denoted as the set of all nodes that have influence on
node k, directly or intermediately, that is, Apa kð Þ ¼
j 2 N , j 6¼ kjC j, kð Þ 6¼ ;� � [ fkg; Uc ka, kbð Þ is denoted

as the hidden state transition coefficient matrix from
node ka to node kb according to the chain c ¼
ka, kl � � � , km, kbð Þ 2 Cðka, kbÞ as:

Uc ka, kbð Þ ¼ Ukakl � � � � � Ukmkb [19]

Given the known graph structure, the EDGM [3]
to [4] can be rewritten without the hidden state vec-
tors as follows:

yk ¼
X

j2Apa kð Þ

X
c2C j, kð Þ

VkU
c j, kð ÞW jxj þ ek [20]

ek ¼
X

j2Apa kð Þ

X
c2C j, kð Þ

VkU
c j, kð Þzj þ �k [21]

According to Eqs. [20] and [21], a vector regression
containing variables from all nodes can be shown as:

y ¼
y1
..
.

yK

264
375 ¼ W

x1
..
.

xK

264
375þ C

z1
..
.

zK

264
375þ �1

..

.

�K

264
375 [22]

where W and C are K � K block matrices, W ¼
Wj, k
� �

and C ¼ Cj, k
� �

; Wj, k and Cj, k are submatrices
in the jth row and kth column of W and C, respect-
ively.

Wj, k ¼
X

c2C j, kð Þ
VkU

c j, kð ÞW j, j 2 Apa kð Þ

0, otherwise
, Cj, k ¼

X
c2C j, kð Þ

VkU
c j, kð Þ, j 2 Apa kð Þ

0, otherwise

8><>:
8><>:

[23]

Without loss of generality, we assume Ey ¼ ly ¼
0, and there is only one OC node at the same time.
Since the possibilities of the OC node are limited, the
hypothesis test under the OC model assumptions can
be concluded as follows:

H0:ly ¼ 0, H1:ly ¼ dd1 or ly ¼ dd2 or � � � or ly

¼ ddK

dk / C

0
..
.

1k
..
.

0

0BBBBBB@

1CCCCCCA [24]

where d is the expected shift scale. Eq. [24] uses infor-
mation from the learned graph, which is contained in
matrix C, to identify how the shifts from hidden state
vectors will affect output variables. Based on the
Gaussian noise assumption, the general likelihood
ratio test will lead to the determination of whether the
following test statistic is larger than a specific thresh-
old (Zou and Tsung 2008):

maxk2N dTkRyy
�� �� [25]

where Ry is the covariance matrix of the output vector
of all nodes, y: It is expected to outperform the basic
T2 test of jyTRyyj because Eq. [25] has more specific
shift information. zyt ¼ 1� kð Þzyt�1 þ kyt is denoted as
the statistic containing historical information, where
yt is the t th observation of the whole output vector y
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and k 2 ð0, 1� is the smoothing parameter. Similar to
DMEWMA, a graph-based multivariate exponentially
weighted moving average (GB-MEWMA) is proposed
to integrate the structural information of the graph,
which is expressed as follows with a starting vector zy0:

MZy
t ¼ max

k2N

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
d0kR

�1
z zyt

�� �� !
, Rz ¼ k

2� kð ÞRy

[26]

When zy0 is selected to be zero, Ed0kR
�1
z zyt ¼ 0 and

Var d0kR
�1
z zyt

� �! ð2� kÞ=k can be derived under the IC
model (Xiang and Tsung 2008). This GB-MEWMA raises
an OC alarm when the charting statistic is larger than a
threshold value, that is, MZy

t > LG, where LG is deter-
mined by a prespecified IC average run length (ARL).

For the diagnosis framework of the GB-MEWMA,
Eqs. [27] and [28] introduce a direct method for
detecting the expected OC node ĵOC together with the
starting OC observation index ŝOC (Zou and Tsung
2008) as follows:

ĵOC ¼ argk2Nmax

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
d0kR

�1
z zym

�� �������
����� [27]

ŝOC ¼ arg0	 t<mmax
1

m� t

Xm
i¼ tþ1

yt
0

 !
R�1y

Xm
i¼ tþ1

yt

 !( )
[28]

where t ¼ 0, 1, :::,m are indices of all monitored
observations. The change point OC model is assumed
in this subsection, where the system follows the IC
model at observations t ¼ 0, 1, :::, s, ðs < mÞ, and fol-
lows the OC model at t ¼ sþ 1, :::,m:

2.5. Structure learning of the EDGM

In the above subsections, it is assumed that a known
graph structure, G ¼ fN ,Ag, is given. However, there
are real-world cases when we have to determine
whether there is a relationship between specific pairs
of nodes. In this subsection, when is unknown, a can-
didate parent node set Cpa kð Þ, k 2 N is given to
replace the actual parent node set Pa kð Þ and we
assume that Pa kð Þ � Cpa kð Þ: It is a very weak assump-
tion since we can simply decide Cpa kð Þ to be all other
nodes that do not violate the DAG assumption.

The objective function for the EDGM’s structure
learning is given as follows:

min
H
S Hð Þ ¼ LS Hð Þ þ RS Hð Þ [29]

Similar to the objective function in Eq. [7]
for estimating parameters, it contains the loss func-
tion part and regularization part. The loss function
LS Hð Þ is still the negative log-likelihood function
of the prediction error, except that prediction of
outputs is determined by the structure based on the
candidate parent node set, as shown in Eqs. [30]
and [31]:

hk ¼ fk xk, hj
� �

j2Cpa kð Þ; h
h
k

� �
þ zk ¼Wkxk þ

X
j2Cpa kð Þ

U jkhj þ zk

[30]

yk ¼ gk hk; h
g
k

� �þ �k ¼ Vkhk þ �k [31]

The error vector eik ¼ yik � gkðhi;HÞ is calculated
by the above equations. The loss function LS Hð Þ has
similar gradients as [14] and [15] with Pa kð Þ replaced
by Cpa kð Þ and C j, kð Þ is adjusted based on Cpa kð Þ:
For regularization function RS Hð Þ, we add a group
LASSO penalty term to penalize the coefficient matrix
of an insignificant parent node to zero in all elements,
which is given as follows:

RS Hð Þ ¼ k1
2
kHk2 þ k2

X
k2N

X
j2Cpa kð Þ

ffiffiffiffiffiffi
qjk
p kU jkkF [32]

where k � kF is the Frobius norm of a matrix, that is,
the square root of the sum of squares of all elements
in a matrix and qjk is the size of the matrix U jk, and
fk1, k2g are the respective penalty parameters. The
penalty function [32] consists of two parts: original
L2 norm for parameter set H and group LASSO pen-
alty, which have different objectives. The group
sparse LASSO penalty tends to make all elements in
several U jk s, j 2 Cpa kð Þ, equal to 0, which can real-
ize the objective of selecting parent nodes for node
k: On the other hand, for the selected parent nodes
whose respective U jk 6¼ 0, we still want a sparse U jk

for the objective of identifying the important rela-
tionship between hidden state vectors. Note that the
second term in Eq. [32] is not a convex function,
and therefore, cannot be directly used in the sto-
chastic proximal gradient algorithm framework. To
transfer a nonconvex objective function into a con-
vex objective function, many techniques have proven
to be effective with satisfactory properties, such as
local linear approximation (LLA) (Zou and Li 2008),
smoothly clipped absolute deviation (SCAD) (Fan
and Li 2001) and minimax concave penalty (MCP)
(Zhang 2010). In this article, an adjusted form of the
MCP is used by approximating RS Hð Þ by ~RS Hð Þ as
follows:
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~RS Hð Þ ¼ k1
2
kHk2 þ k2

X
k2N

X
j2Cpa kð Þ

pk2, c kU jkkF
� �

@pk2, c kAkF
� �
@A

¼ k21A � A
c
, kAkF 	 k2c

0, kAkF > k2c

8<:
[33]

where c > 1 is a tuning parameter for penalizing the
coefficient matrix. As c!1, elements from all U jks
will turn to zero, resulting in a sparser graph struc-
ture. The details of the MCP and discussion on choos-
ing hyperparameters can be found in previous works
(Breheny and Huang 2011). Replacing RS Hð Þ with
~RS Hð Þ, a similar stochastic proximal gradient algo-
rithm in Section 2.3, can be utilized according to Eqs.
[14], [15], [17], and [33]. Although there are many
other effective methods of graph structure learning,
Eq. [33] is used in this work because it suits the spe-
cial structure of EDGM and can simultaneously
address the problems of the structure learning step
together with parameter estimation. Algorithm 2 pro-
vides detailed steps for the structure learning method.

Algorithm 2: Stochastic proximal gradient descent
algorithm for structure learning
Input: The training set xik, yikf gKk¼1

n oNtrain

i¼1
; the valid-

ation set xik, yikf gK¼1
n oNvalid

i¼1
; the tuning sets for k1, k2

and c, are K1,K2,Kc, ; the learning rate g; the recur-
sion limit parameter n; the candidate parent

set Cpa kð Þ� �K
k¼1

Output: Estimated parameter set Ĥ ¼ ĥ
h
k , ĥ

g
k

n oK

k¼1;

Estimated structure dPaðkÞn oK

k¼1
(1) Initialize Hð0Þ ¼ 0, Pa kð Þð0Þ ¼

Cpa kð Þ, k ¼ 1, :::,K
(2) for k1, k2, cð Þ 2 K1 � K2 � Kc

(3) Set s ¼ 0,H 0ð Þ k1, k2, cð Þ ¼ Hð0Þ

and Pa kð Þ 0ð Þðk1, k2, cÞ ¼ Pa kð Þ 0ð Þ
(4) do
(5) for k ¼ f1, :::,Kg
(6) Randomly select i 2 f1, :::,Ntraing and

get xik, yikf g
(7) for h 2 H sð Þ k1, k2, cð Þ
(8) if h 2 hh

sð Þðk1, k2, cÞ :
(9) Update hðsþ1Þ k1, k2, cð Þ by Eq. [17]

replacing @
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [14] and
[33], based on Pa kð Þ sð Þðk1, k2, cÞ

(10) else
(11) Update hðsþ1Þ k1, k2, cð Þ by Eq. [17]

replacing @
@HL x, y;Hð Þ and @

@HR Hð Þ by Eqs. [15] and
[33], based on Pa kð Þ sð Þðk1, k2, cÞ

(12) end if

(13) end for
(14) end for
(15) Set s sþ 1
(16) until kH sð Þ k1, k2, cð Þ �H s�1ð Þ k1, k2, cð Þk2 < n
(17) end do
(18) Set Ĥ k1, k2, cð Þ ¼ H sð Þ k1, k2, cð Þ
(19) for k ¼ 1, :::,K
(20) for j 2 Pa kð Þ sð Þðk1, k2, cÞ
(21) if U ðsÞjk k1, k2, cð Þ ¼ 0 :
(22) Remove j from Pa kð Þ sð Þðk1, k2, cÞ
(23) Set dPaðkÞðk1, k2, cÞ ¼ Pa kð Þ sð Þðk1, k2, cÞ
(24) Calculate RMSE using parameter Ĥ k1, k2, cð Þ

and dPaðkÞðk1, k2, cÞ in validation set get-
ting RMSEðk1, k2, cÞ

(25) end for
(26) The final combination is set to

be ðk̂1, k̂2, ĉÞ ¼ argmin k1, k2, cð Þ2K1�K2�Kc
RMSEðk1, k2, cÞ

(27) The final estimated parameter set is set to
be Ĥ ¼ Ĥ k̂R

� �
(28) The final estimated structure is set to bedPaðkÞ ¼ dPaðkÞðk̂1, k̂2, ĉÞ, k ¼ 1, :::,K

There are many hyperparameters to be selected in for-
mer subsections: (1) we set the dimensions of the hid-
den state vector, hk to be the same, that is, nh, to
control the expected information that can influence
output variables from the inputs, which can be deter-
mined by real-world cases or dimension reduction
techniques; (2) penalty parameters kR, k1, k2 are tuned
from a given candidate parameter set by the root
mean square error (RMSE) of validation observations.

3. Numerical experiments

In this section, numerical simulation studies are con-
ducted to verify the effectiveness of the proposed
EDGM along with the following techniques discussed
in Section 2: parameter estimation, monitoring frame-
work, and graph structure learning.

Similar to previous works (Yan et al. 2021), the
simulation data in this section are generated according
to the following equations:

hik ¼Wkxik þ
X

j2Pa kð Þ
U jkhij þ zik [34]

yik ¼ Vkhik þ �ik [35]

where i ¼ 1, :::,N are the index of observations; the
transition error zik and emission error �ik follow a
Gaussian distribution, zk � Nð0, r2zIzÞ and �k �
N 0, r2�I�
� �

where Iz and I� are identity matrices with
respective dimensions; each element in xik is
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generated from N 0, 1ð Þ; each element in Wk is gener-
ated from N 0, 1ffiffiffiffiffi

nxk
p

� �
; and each element in U jk, Vk

is generated from N 0, 1ffiffiffiffi
nh
p

� �
where nxk and nh are

dimensions of input variables of node k and hidden
state vectors, respectively. In this article, we set nxk ¼
nx ¼ 20, nh ¼ 3 and nyk ¼ ny ¼ 5 in the later simula-
tion studies. There are three graph structures that are
used in this section, which are denoted as G1, G2,
and G3, and represent three types of scenarios: a small
number of nodes with sparse arcs; a small number of
nodes with dense arcs; and a large number of nodes
with sparse arcs. The specific structures of the three
designed graphs are shown in Figure 3.

In the first part, we will verify the effectiveness of
the EDGM by evaluating the prediction error of out-
puts in test data. Three other models are compared as
benchmarks: (1) do not separate the inputs and out-
puts and denote zTk ¼ ½xTk , yTk �: The respective graph-
ical model is given as follows:

zik ¼
X

j2Pa kð Þ
Cjkzij þ eik, k 2 N [36]

which is named as Benchmark 1 where eik are white
noises; (2) there is a separation of inputs and outputs
but do not introduce hidden state vectors. The
respective graphical model is given as follows:

yik ¼ Dkkxik þ
X

j2Pa kð Þ
Djkxij þ eij, k 2 N [37]

which is named as Benchmark 2; (3) for a given node
k 2 N , select all chains that end with k, that is,
CA kð Þ ¼ fCðj, kÞjj 2 N , j 6¼ kg: Based on each chain
ck 2 CA kð Þ, a traditional state space model can be
constructed with the sequential substructure and
obtain a prediction of outputs ŷ ik

ðckÞ: The final predic-
tion is calculated as the mean of predictions from all
chains as follows:

ŷ ik
B3 ¼ ŷ _ik

ckð Þ , ck 2 CA kð Þ, k 2 N [38]

This modeling approach provides a direct way of
utilizing existing MMS models in the graph situation,
which is called Benchmark 3. The parameter estima-
tion steps are similar to those of the EDGM, as shown
in Section 2 with the respective models [36] to [38].
The proposed EDGM is compared with the other
three benchmarks in different scenarios by intensive
simulation studies. Several important factors are con-
sidered, including (1) the number of nodes in the
graph; (2) the density of the arcs in the graph; (3) the
sample size of the training dataset; (4) the scale of
transition error r2z ; and (5) the scale of emission error
r2� : The detailed settings of these factors can be found
in Table 1.

The benchmark combination of factor settings is
G1 with 100 training samples and r2� ¼ r2z ¼ 0:1, for

Figure 3. The three designed graphs: (a) G1 with 8 nodes and 8 arcs; (b) G2 with 8 nodes and 16 arcs; (c) G3 with 16 nodes and
16 arcs.

Table 1. Factor settings for simulation studies.
Factors Levels Meanings

Nodes Level 1: 8
Level 2: 16

Number of nodes in the graph

Density Level 1: 1
Level 2: 2

Proportion of # of arcs to #
of nodes in the graph

Sample size Level 1: 10
Level 2: 100

Training sample size

Emission Noise Level 1: 0.1
Level 2: 1

Variance of noise in outputs

Transition Noise Level 1: 0.1
Level 2: 1

Variance of noise in hidden state
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example, when analyzing the effect of the number of
nodes, the results from the proposed EDGM and three
benchmarks in G1, G2, and G3 are compared with
training sample sizes Ntrain ¼ 100 and r2� ¼ r2z ¼ 0:1,
and the results from G1 and G2 are compared when
analyzing the effect of the density of the arcs in graph
structures. Other settings for this part of the numer-
ical experiment are given as the size of the test dataset
is Ntest ¼ 20; the size of the validation dataset is set
according to the size of the training dataset, that is,
Nvalid ¼ 0:5Ntrain; and all the results for prediction
accuracy are calculated under 300 replications. The
validation metrics for choosing the combinations of
hyperparameter K and evaluation of the prediction
accuracy are the root mean square error (RMSE) of
the validation dataset and test dataset, respectively,
which are given as follows:

Figure 4. Boxplots of RMSEs from the proposed EDGM and
three benchmarks with different numbers of nodes in graph
(P: the proposed EDGM; B1–B3: Benchmarks 1–3; S: small num-
ber of nodes; L: large number of nodes).

Figure 5. Boxplots of RMSEs from the proposed EDGM and
three benchmarks with different densities of arcs in graph (P:
the proposed EDGM; B1–B3: Benchmarks 1–3; S: sparse arcs; D:
dense arcs).

Figure 6. Boxplots of RMSEs from the proposed EDGM and
three benchmarks with different training sample sizes (P: the
proposed EDGM; B1–B3: Benchmarks 1–3; S: small training set;
L: large training set).

Figure 7. Boxplots of RMSEs from the proposed EDGM and
three benchmarks with different scales of transition error (P:
the proposed EDGM; B1–B3: Benchmarks 1–3; S: small scale; L:
large scale).

Figure 8. Boxplots of RMSEs from the proposed EDGM and
three benchmarks with different scales of emission error (P:
the proposed EDGM; B1–B3: Benchmarks 1–3; S: small scale; L:
large scale).
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RMSEvalid Kð Þ ¼ 1
Nvalid

XNvalid

i¼1

1
Nj j
X
k2N

1
nyk
kyik � ŷ ikjxij , j 2 N ,K

� �k2
[39]

RMSE ¼ 1
Ntest

XNtest

i¼1

1
Nj j
X
k2N

1
nyk
kyik � ŷ ikjxij , j 2 N ,Kbest

� �k2
[40]

where Kbest is the best combination of hyperpara-
meters chosen by Eq. [39] and Nvalid and Ntest are the
sizes of the validation dataset and test dataset, respect-
ively. In Figures 4–8, a comparison of the proposed
EDGM and benchmark models is shown by varying
the five factors in Table 1. According to the results,
several findings can be concluded: (1) the proposed
EDGM outperforms the three benchmarks in terms of
the means and standard deviations in RMSEs in
nearly all scenarios, especially Benchmark 1 and
Benchmark 3; (2) compared with the number of
nodes, the prediction accuracy is more sensitive to the
edge density. All these methods have larger means
and standard deviations of RMSEs when the graph
has denser arcs; (3) larger scales of transition error r2z
result in larger means and standard deviations of
RMSEs; (4) the proposed EDGM can obtain a robust
estimation compared to the three benchmarks even
with a small training sample size; (5) larger scales of
emission error r2� only result in larger means of
RMSEs but have no substantial influence on standard
deviations but a relatively smaller deviation of RMSEs.
As shown in Figure 8, the RMSEs are not symmetric-
ally distributed and are left truncated, where the
threshold is determined by the model error. In this
case, the threshold is mostly determined by the scale
of emission error. On the other hand, the RMSEs’ dis-
tributions have right tails caused by what we call
“failure estimations.” The reasons for failure estima-
tions consist of two parts: (1) the overfitting problem
since there are a large number of parameters to be
estimated. This happens mostly in the EDGM because
there are more estimated parameters in the EDGM
than benchmarks which is why RMSEs for the EDGM
have more outliers; (2) for the benchmarks, there
exists systematic error since the simulated data are
generated as the EDGM. The error caused by these
two problems would slightly increase with the increase
of emission error, while the left threshold is signifi-
cantly influenced by the increase of emission error.
Therefore, this would “compress” the distribution of
RMSEs of the four methods, resulting in the finding
that high emission error leads to smaller standard
deviations of RMSEs.

Note that these comparisons are based on simu-
lated data generated by EDGM Eqs. [5] and [6].
Although the advantages of the EDGM shown in
Figures 4–8 might be explained by how the data are
generated, the results still prove that the EDGM can
better model the system if it has hidden states and
graph structures of subsystems. On the other hand,
using these benchmarks for model simplification can-
not obtain a satisfactory result for predicting the
outputs.

Additionally, we want to find the EDGM’s per-
formance when we don’t know the true dimension of
the hidden state vector. Denote the true dimension of
the hidden state vector as nh, that is, the dimension
of the hidden state vector in generating the simulated
data. In practice, we sometimes don’t know nh:
Denote the dimension of the hidden state vector in
formulating and estimating the model to be ~nh: The
figure below shows the EDGM’s prediction perform-
ance with different ~nh: nh is set to be nh ¼ 5, and the
other settings are the same as the benchmark setting.
As shown in Figure 9, when ~nh 6¼ nh, the estimated
EDGM’s has both larger means and deviations of
RMSEs. Specifically, when ~nh < nh, this difference is
relatively large and would decrease as ~nh being closer
to nh: On the other hand, when ~nh > nh, this differ-
ence is smaller but increases the computation cost and
possibility of overfitting because of the increasing
number of estimated parameters. In practice, based on
the dimension reduction technique, such as principal
component analysis (PCA), if the size of the training
dataset is large and with great computation ability, a
larger dimension ~nh can be chosen to get better pre-
dictive performance; if the size of the training dataset
is small with a high requirement on computation

Figure 9. Boxplots of RMSEs from the proposed EDGM with
different dimensions of the hidden state vector in estimating
the model, that is, ~nh (the true dimension of the hidden state
vector is nh ¼ 5).
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speed, the chosen dimension of the hidden state vec-
tor ~nh can be set smaller.

In the second part, monitoring the effectiveness
of the proposed GB-MEWMA control chart is verified.
MEWMA and group EWMA are the two comparing con-
trol charts that are given in Eqs. [41] and [42] as follows:

MEWMA: zyt ¼ 1� kð Þzyt�1 þ kyt ,

t ¼ 1, :::, s, sþ 1, :::,m

MZMEWMA
t ¼

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
zyTt R�1z zyt
��� ���, Rz ¼ k

2� kð ÞRy

[41]

GEWMA: zkt ¼ 1� kð Þzkt�1 þ ketk, k 2 N ,

t ¼ 1, :::, s, sþ 1, :::,m

MZGEWMA
t ¼ max

k2N

ffiffiffiffiffiffiffiffiffiffiffi
k

2� k

r
zkt TR

�1
zk
zkt

��� ���
 !

, Rzk ¼
k

2� kð ÞRek

[42]

where MZMEWMA
t and MZGEWMA

t are the respective
charting statistics; etk is the error vector of node k at
the t th observation and Rek is the respective

covariance matrix, which can be calculated according
to xt and yt by Eqs. [20] and [21]. Details for the
designs of these two control charts can be found in
previous works (Alipour and Noorossana 2010; Xiang
and Tsung 2008). Under graph structure G1 with
r2z ¼ r2� ¼ 1, the monitoring ability of the proposed
GB-MEWMA and the two benchmark control charts
are compared in different scenarios varying in the
scale of shifts d and OC position kOC 2 N : Detailed
settings of these two factors are listed in Table 2.

Similar to Section 2.4, the OC models assume that
a mean shift sk ¼ d1k occurs in the hidden state vec-
tor at node k ¼ kOC, as in Eq. [18]. With the specified
IC ARL, ARL0 ¼ 370 and weight parameter k ¼ 0:2,
the control limits of the three control charts are set.
The means and standard deviations of the ARLs of
different OC scenarios are shown in Table 3 under
2000 replications. We also consider combining

Table 3. ARL comparisons of different OC scenarios of GB-MEWMA and the other comparing control charts.
Delta GB-MEWMA MEMWA GEWMA B1 þ GEWMA B2 þ GEWMA B3 þ GEWMA

Shift at Node 2

0.5 160.69 (32.75) 280.92 (28.96) 265.14 (25.15) 173.41 (20.44) 217.01 (23.28) 205.11 (26.32)
1 81.50 (24.76) 145.01 (19.05) 133.63 (17.82) 84.08 (9.08) 92.86 (13.34) 107.83 (12.68)
1.5 36.14 (16.03) 73.98 (13.10) 68.17 (12.85) 42.27 (6.68) 51.21 (6.76) 66.94 (7.14)
2 22.9 (13.27) 44.41 (9.55) 35.71 (8.29) 30.03 (2.04) 33.51 (9.20) 35.55 (9.99)
3 12.32 (5.84) 15.20 (4.68) 13.26 (4.48) 13.00 (1.46) 15.19 (3.56) 16.30 (4.77)
4 5.76 (2.72) 8.75 (3.38) 6.20 (2.60) 5.81 (0.82) 7.55 (1.39) 7.65 (2.36)
5 3.46 (2.83) 5.65 (3.21) 4.17 (2.34) 3.76 (0.64) 4.39 (1.33) 4.75 (1.74)

Shift at Node 4

0.5 182.71 (34.62) 280.65 (28.29) 265.22 (25.56) 205.16 (22.60) 236.06 (27.11) 231.72 (28.26)
1 89.14 (26.06) 145.22 (19.01) 123.03 (16.18) 94.70 (10.24) 108.81 (8.11) 112.85 (14.43)
1.5 51.37 (15.67) 74.50 (12.86) 68.53 (12.59) 59.60 (6.01) 60.55 (7.04) 67.03 (7.74)
2 29.69 (10.51) 46.76 (10.99) 32.11 (6.80) 30.87 (5.50) 30.63 (5.67) 31.71 (6.78)
3 12.45 (5.81) 16.40 (5.22) 12.52 (4.31) 13.49 (1.03) 12.92 (1.63) 15.37 (2.78)
4 4.79 (2.82) 8.26 (3.01) 5.31 (1.62) 5.65 (0.83) 5.40 (0.67) 5.77 (1.88)
5 3.22 (1.65) 4.05 (1.77) 4.01 (1.35) 3.16 (0.82) 3.26 (0.60) 3.68 (0.92)

Shift at Node 6

0.5 277.21 (30.39) 333.29 (29.60) 319.46 (28.48) 289.63 (27.44) 298.80 (35.74) 296.85 (27.77)
1 175.30 (24.67) 236.09 (26.35) 196.77 (21.96) 180.26 (20.59) 187.13 (22.17) 181.43 (23.97)
1.5 97.32 (20.06) 162.58 (21.94) 114.71 (17.03) 101.45 (18.20) 107.06 (15.98) 107.74 (16.74)
2 69.54 (17.77) 107.15 (17.43) 77.26 (14.80) 71.58 (11.13) 76.91 (12.49) 78.08 (12.71)
3 38.46 (11.30) 61.25 (13.98) 43.03 (8.22) 38.88 (9.98) 39.71 (10.34) 40.17 (10.74)
4 23.73 (8.06) 34.20 (9.39) 25.29 (8.20) 18.85 (7.71) 19.23 (7.73) 26.80 (7.75)
5 13.90 (6.73) 25.01 (8.99) 15.44 (6.10) 8.91 (2.52) 12.93 (2.90) 13.67 (2.74)

Shift at Node 8

0.5 330.89 (31.95) 354.43 (29.81) 333.38 (28.27) 335.59 (28.66) 341.54 (30.57) 351.13 (30.60)
1 231.22 (28.64) 299.50 (26.84) 260.59 (26.22) 235.22 (27.48) 242.13 (29.96) 251.73 (27.69)
1.5 166.12 (25.54) 223.50 (23.79) 179.44 (22.34) 169.25 (23.65) 174.17 (24.68) 169.14 (25.06)
2 119.80 (22.88) 181.22 (21.89) 135.64 (19.45) 126.05 (21.09) 131.96 (22.56) 140.71 (21.72)
3 82.18 (19.38) 121.28 (20.32) 89.50 (16.96) 75.35 (19.32) 80.41 (19.28) 82.29 (16.16)
4 65.48 (16.84) 90.07 (17.64) 69.12 (15.45) 64.93 (17.05) 65.76 (15.43) 68.61 (15.08)
5 49.02 (13.79) 68.06 (15.96) 52.97 (14.91) 45.63 (14.38) 46.91 (10.77) 48.51 (11.85)

Note: Bold values represent the best of each row.

Table 2. Factor settings of the monitoring studies.
Factor Scenarios

OC position kOC kOC 2 f2, 4, 6, 8g
The scale of shifts d d 2 f0:5, 1, 1:5, 2, 3, 4, 5g
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modeling methods and monitoring methods as a
whole framework. Among the three monitoring meth-
ods, only GEWMA is based on the prediction error,
while the monitoring statistics of GB-MEWMA and
MEWMA are calculated directly from the observed
output variables. Note that the modeling methods
only impact the prediction errors, which means the
monitoring ability of GB-MEWMA and MEWMA is
irrelevant to the modeling methods. Therefore, we
have only added combinations of GEWMA and the
three benchmarks, named as B1þGEWMA,
B2þGEWMA, and B3þGEWMA, respectively. As
shown in the comparison results, GB-MEWMA out-
performs the other two control charts in terms of the
means of ARLs, especially MEWMA. The advantages
of GB-MEWMA are larger with smaller scales of shifts
and OC nodes that have more child nodes, which
means that the proposed control chart is more effect-
ive when detecting small shifts and succeeds in char-
acterizing the effect on other nodes through the graph
structure. Although GB-MEWMA has larger standard
deviations, it still remains in an acceptable range and
decreases rapidly as shift scales increase. On the other
hand, when combined with the estimated models, the
advantages of the GB-MEWMA decrease as the OC

node being away from the root node and the OC scale
being larger. This finding further proves that the GB-
MEWMA is more useful for detecting small shifts

Figure 10. Comparisons of the true graph and learned graphs by the proposed adjusted MCP approach and group sparse LASSO:
(a) G1, (b) G2.

Table 4. Confusion matrices and F1 scores for G1 and G2 of
the proposed adjusted MCP approach.

G1

Predicted graph

True False

True graph True 7 1
False 7 13

F1 score 0.746

G2 Predicted graph

True False

True graph True 14 2
False 6 6

F1 score 0.636

Table 5. Confusion matrices and F1 scores for G1 and G2 of
group sparse LASSO.

G1

Predicted graph

True False

True graph True 7 1
False 11 9

F1 score 0.594

G2 Predicted graph

True False
True graph True 15 1

False 9 3
F1 score 0.395
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because of its ability to accumulate them through the
graph structure.

In the third part, the proposed structure learning
framework introduced is verified in structures of G1
and G2. As mentioned in Section 2.5, the given infor-
mation of graph structures is turned from the parent
node set PaðkÞ to the candidate parent node set
CpaðkÞ, where the settings for CpaðkÞ are usually
learned from prior expert knowledge in real cases. In
simulation studies, we assume there is no prior know-
ledge and set Cpa kð Þ ¼ j < kjj 2 N ¼ 1, :::,Kf g� �

,
which has no limits on the parents except for keeping
the DAG assumption. The comparison method is
group sparse LASSO, which learns parents separately
by each node k and sets parameters from U jk to be in
the same group (Li, Nan, and Zhu 2015). The factor
settings of the two graphs are the same as the bench-
mark setting in the parameter estimation part, that is,
r2z ¼ r2� ¼ 0:1 and Ntrain ¼ 100: Specially, in the
numerical experiment part, since the size of training
and validation dataset is not enough to select an opti-
mal combination of the tuning parameters and to
avoid overfitting problem on tuning parameters, we
set k1 ¼ k2 ¼ kS , and K1 ¼ K2 ¼ KS: Comparisons
of the learned graph structures and confusion matrices
for determining the existence of all possible arcs are
shown in Figure 10 and Tables 4 and 5. The results
show that the group sparse LASSO tends to learn a
denser graph than the adjusted MCP approach in
learning the EDGM. A reasonable explanation for this
finding is that group sparse LASSO might regard
some of the ancestor nodes that may not directly
influence the aimed node as the parent nodes, while
the proposed adjusted MCP approach can accurately
predict the outputs with limited parents through the
transition of hidden states under the EDGM and the
framework of stochastic proximal gradient algorithm.
In real cases, the proposed method for learning graph
structures is also more attractive because a sparser
structure provides more specific information about
the system, even with a few missed arcs.

4. Case study

In this section, a monocrystalline silicon growth pro-
cess using the CZ method is introduced to show how
the proposed EDGM is applied in real-world cases to
help model and predict essential output variables. As
mentioned in Section 1, the CZ method is a main-
stream technique for monocrystalline growth proc-
esses due to its low cost and efficiency compared with
other methods (Mohamed Ariff, Hashmi, and

Brabazon 2018). However, the growth process of a
normal-sized silicon ingot usually takes a long time
(approximately several days), and there would be
much higher extra costs of materials and time to ter-
minate the growth process before a whole ingot is
produced. On the other hand, there are many impor-
tant factors related to the CZ silicon growth process,
such as thermal effects, impurities, and rotational
speed of the seed. Small deviations in these factors
might affect the final quality of the ingots, resulting in
various defects, such as stress, point defects, and dislo-
cations (Seigneur et al. 2016). Therefore, to better
monitor and control the silicon growth process,
numerous sensors are installed on the equipment. The
variables monitored by these sensors, together with a
great number of controllable variables, form the total
variable set.

For the case studied in this article, all the involved
variables can be further grouped into six subsystems:
gas control, pressure field, heater, thermal field,
machinery, and ingot. The available data contain
�4000 observations from 42 ingots, which are divided
into a training set, a validation set, and a test set in
the following proportions: Ntrain : Nvalid : Ntest ¼ 3 : 1 :

1: The observations are collected from two important
stages of the growth process: (1) the shoulder growth
(SG) stage when the seed decreases its rotation and
pulling speed to increase the ingot diameter and (2)
the isodiametric growth (IG) stage when the seed
keeps a steady speed to form a cylindrically shaped
ingot with the required diameter. The total observa-
tions are separated by the two stages, where the SG
stage takes a relatively shorter time (�300 observa-
tions) and the IG stage tends to be longer but steadier
(�3700 observations). There are 30 controllable varia-
bles and 20 sensing variables, which are comparatively
average-distributed in the six subsystems. The

Figure 11. Graph structure of CZ silicon growth process in the
SG and IG stages (PF: pressure field; GC: gas control; H: heater;
TF: thermal field; M: machinery; I: ingot).
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dimensions of hidden state vectors are set to nh ¼ 2
in this case. Detailed information for variables is not
introduced due to secrecy concerns.

Although controllable variables can be adjusted
through a feedback control system during the growth
process, they are usually set to predetermined values
to avoid variations from the environment. Therefore,
we need to model the relationship between variables
and make accurate predictions for sensing variables,
which contain important quality measurements given
controllable variables. In this case, controllable varia-
bles and sensing variables are considered as inputs
and outputs, respectively, while the subsystems are set
as nodes in graph structures. Moreover, based on the
CZ technique and the real situation, prior expert
information on the graph structure is given in Figure
11: the heater subsystem influences the machinery
subsystem through the thermal field; the machinery
controls the rotation and pulling speed of the seed to
affect the diameter of the ingot; and the pressure field
and gas control subsystems determine the external
environment to affect the whole growth process.
Based on the known structure, the results of predic-
tion accuracy for all output variables from the EDGM

and the three benchmark models (the same as Section
3) are shown in Figure 12 and Table 6. We observe
that the proposed EDGM has better prediction accur-
acy and stability in both stages. Compared with the
IG stage, the SG stage has more changing variables in
the outputs, resulting in smaller standard deviations
but larger means of RMSEs in all methods. On the
other hand, the goal of the IG stage is to keep the
ingot growing at a required diameter; therefore, many
outputs are comparatively steady, resulting in smaller
means of RMSEs, while the overfitting problem results
in a larger standard deviation in the three benchmark
models. These observations prove that the proposed
EDGM can better model the relationship between
controllable variables and sensing variables in this sili-
con growth process by introducing hidden state vec-
tors to select important factors that influence the
outputs and other subsystems.

5. Conclusions

In this article, an extended directed graphical model
together with parameter estimation, monitoring, and
structure learning methods are proposed. This

Figure 12. Boxplots of RMSEs from the proposed EDGM and three benchmarks in two stages (P: the proposed EDGM, B1–B3:
Benchmarks 1–3).

Table 6. RMSEs from the proposed EDGM and three benchmarks in two stages (standard deviations are shown in parentheses).
Isodiametric growth stage

Methods Proposed Benchmark 1 Benchmark 2 Benchmark 3

RMSE 0.58478 (0.0139) 0.64143 (0.0388) 0.60956 (0.0407) 0.70443 (0.0351)

Shoulder growth stage

Methods Proposed Benchmark 1 Benchmark 2 Benchmark 3

RMSE 0.70504 (0.0102) 0.86458 (0.0168) 0.75588 (0.0148) 0.78930 (0.0176)
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proposed model is an extension of traditional graph-
ical models that considers variables as nodes. To
address the problem that considerable variables in
complex systems might have certain structures for
separation with unequal importance, variables are
classified in advance, and a group of variables is con-
sidered to be a node. The EDGM models the relation-
ship among variables within and between nodes by
introducing hidden state vectors. In numerical simula-
tions, first, the prediction RMSEs of the EDGM are
compared with those of the other three models to
show the effectiveness and accuracy of the proposed
parameter estimation step. Second, the monitoring
performance of the proposed GB-MEWMA is proven
to outperform MEWMA and GEWMA in detecting
mean shifts in graphical models. An adjusted MCP
approach for learning graph structures is also pro-
posed and proven to obtain a sparser estimation for
graphs compared to group sparse LASSO. Finally, the
proposed EDGM is verified in a case regarding the
monocrystalline silicon growth process. The results
imply that with hidden state vectors, the EDGM out-
performs the other methods in cases where there are
numerous variables with prior knowledge of separa-
tions for subsystems. For future research, adjustment
to the proposed EDGM is needed to deal with high-
dimensional data. Although the input dimension can
be set at a large number, temporal and spatial infor-
mation is not considered in the EDGM, which is
important in dealing with high-dimensional data, such
as functional data, images, and videos. Also, the
effectiveness of the model in addressing problems
with nonlinear relationships and multilayer hidden
states still remains to be studied.
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