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When quality characteristics cannot be measured on a continuous scale due to either inherent or outside

constraints, qualitative observations can be collected alternatively. Under this situation, most conventional

run-to-run (R2R) process-control algorithms that are developed based on quantitative measurements cannot

be implemented. In this paper, we develop a run-to-run control scheme that uses qualitative information for

process adjustments. A two-phase modeling and adjustment strategy is introduced and demonstrated by

a real example from a deep reactive ion etching (DRIE) process: model building and parameter estimation

is performed in Phase I, and a latent-model control law, a categorical R2R controller, is developed for

process regulation in Phase II. Simulation results show that the proposed algorithm exhibits competitive

control performance, less adjustment effort, and a larger stability region than the conventional exponentially

weighted moving average (EWMA) controller.

Key Words: Categorical Variable; Cautious Control; Exponentially Weighted Moving Average Controller;

Run-to-Run Process.

R
UN-TO-RUN (R2R) control techniques have been

widely adopted by the semiconductor industry
for quality assurance (Sachs et al. (1995), Del Castillo
and Hurwitz (1997)). The target processes usually
contain uninterruptible cycles, which are termed as
runs. A recipe that describes the setting of control-
lable factors is suggested by an R2R controller before
each cycle and cannot be changed during the process-
ing cycle. However, the recipe is allowed to vary from
run to run to compensate for newly emerged devia-
tions.

Extensive research exists reported in the literature
regarding the regulation of R2R processes and several
R2R controllers have been proposed. Among others,
the exponentially weighted moving average (EWMA)
controller (Sachs et al. (1995)) can compensate for
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integrated moving average (IMA) noises and weak
auto-correlations of a linear process (Del Castillo
and Hurwitz (1997)); the predictor corrector control
(PCC) controller (Butler and Stefani (1994)) is capa-
ble of compensating for deterministic process drifts;
the self-tuning controller is robust to both shifts and
deterministic drifts even if the process exhibits strong
autocorrelation (Del Castillo and Hurwitz (1997)).
Tsung and Shi (1999) investigated more advanced
proportional-integral-derivative (PID) controllers in
R2R process control. All the popular controllers are
designed to work on the basis of quantitative obser-
vations. A comparative analysis of the popular con-
trollers is referred to Zhe et al. (1996), Campbell et
al. (2002), and Zhang et al. (2003).

In practice, timely quantitative measurements are
not always available due to various practical con-
straints. For example, etching is an important stage
in micro-electro-mechanical systems (MEMS) fabri-
cation, and deep reactive ion etching (DRIE) is a
popular etching technique for forming desired pat-
terns on wafers. In the DRIE process, the off-site
measurement of an etched wafer needs to be carried
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FIGURE 1. Illustrations of Positive and Negative Etching Profiles from a DRIE Process.

out with the aid of a scanning electron microscopy
(SEM) in laboratories. This operation could be a ma-
jor bottleneck in high-volume production lines. Alter-
natively, some authors have suggested utilizing en-
hanced algorithms to compensate the lack of timely
information. Baras and Patel (1997) presented a ro-
bust R2R control approach that aims to minimize the
worst-case performance. Good and Qiu (2002) intro-
duced a multistep forecasting strategy to estimate
process output and parameters in advance. Never-
theless, all these approaches have increased process
variances and made the stability region smaller.

One of the compensatory techniques for metrol-
ogy delay is to collect observations in a faster way
by sacrificing accuracy. Qualitative observations can
usually be collected much easier if no or less inter-
active laboratory operations are involved. Consider
the DRIE process in MEMS applications, one of the
most important quality characteristics of interest is
the trench profile (May et al. (1991)). The desired
profile is the one with smooth and vertical sidewalls,
which is referred to as an anisotropic profile. How-
ever, positive or negative profiles will be seen if the
machine is not finely tuned. Figure 1 outlines sev-
eral deviated profiles from the DRIE process. Instead
of measuring the angles of the sidewalls accurately,
which usually costs longer aligning time for different

shapes, the profiles can be classified as “positive,”
“normal,” and “negative” based on the verticality of
the trenches.

There are situations under which quality char-
acteristics are measured by categorical variables in
a natural way. In the DRIE example, sidewalls are
not always as smooth as those shown in Figure 1.
Ball-shaped, bottle-shaped, or even more compli-
cated profiles may be generated (Ayon et al. (1999))
. In Figure 2, some irregular profiles are recorded.
The sidewalls of the profiles are difficult to measure
exactly in terms of degrees because of their nonlin-
ear shapes. However, it is still possible to distinguish
a positive profile from a negative one and to judge
whether it is overetched or underetched. Therefore,
it is advantageous to use categorical scales to con-
vey visual impressions under these situations. An-
other example is given by Spanos and Chen (1997),
in which the photoresist line profiles from a dry de-
velop process with mouse bites are measured on an
ordinal categorical scale as “very rough,” “rough,”
“smooth,” “very smooth,” etc.

A qualitative dataset, in spite of its low accuracy,
contains substantially useful information and may
be used to directly affect the quality of products or
the performance of processes. Conventional control
methodologies have provided a framework that is re-

FIGURE 2. Illustrations of Irregular Etching Profiles from a DRIE Process.
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stricted to quantitative measurements. However, re-
search on R2R process control using qualitative infor-
mation has not drawn much attention so far. Spanos
and Chen (1997) initiated some work and demon-
strated the importance and possibility to use qual-
itative information for R2R process monitoring and
control in a real example by assuming a static model
with specified noise type. If a dynamic disturbance
model is presented, their method will fail to track
process variations and result in poor control perfor-
mance. In addition, their method involves a nonlin-
ear optimization problem and extensive calculations
are needed for model estimation and recipe genera-
tion. This feature has made it difficult for practition-
ers to implement and extend. Categorical variables,
which by convention are called linguistic variables,
are also seen in fuzzy control theory (Passino and
Yurkovich (1998)). However, a fuzzy logic controller
requires numerical observations as its input. Further-
more, the controller may assign each observation into
more than one linguistic sets based on the member-
ship functions, which is different from the mutually
exclusive categories considered in this paper (Lavio-
lette et al. (1995)).

In this paper, we aim to develop a novel R2R con-
trol algorithm that makes use of categorical mea-
surements to recommend adjustments. The rest of
this paper is organized as follows. The modeling is-
sues of categorical variables are introduced in the
next section. Following that, a two-phase R2R con-
trol strategy, termed a categorical controller, is devel-
oped and illustrated by a real example from DRIE.
Then the corresponding stability analysis and per-
formance comparison are conducted. The last sec-
tion concludes this paper with some future research
directions.

The Modeling of
Categorical Variables

A categorical variable that has inherent ordered
values is called an ordinal variable (Agresti (1990)).
With the presence of ordinal response variables, it
is essential to establish their functional relationship
with influential factors. This section will focus on the
modeling issues in R2R processes with categorical
observations.

Latent Variables and Latent Models

When the functional relationship between a re-
sponse variable and explanatory variables is difficult

to establish directly, a possible solution is to intro-
duce an intermediate variable to bridge the gap and
split the function into two models. One model il-
lustrates the way that the intermediate variable is
influenced by the explanatory variables, while the
other model describes the mapping relationship be-
tween the response variable and the intermediate
variable. The intermediate variable is called a latent
variable, as it is used for the establishment of the
models. The corresponding models that comprise the
latent variable are called latent models. For example,
when studying the proportion employed and educa-
tion level in social science, the propensity to work is
a latent variable that links the response variable and
the explanatory variable.

Considering an R2R process that is described by
the following model (see Apley and Kim (2004),
Del Castillo and Hurwitz (1997), and the references
therein):

yt = α + βut−1 + dt, (1)

where yt, the output of the process at step t, cor-
responds to the control action at (t − 1), ut−1. The
vector (α, β) contains the parameters that describe
the process. dt is a disturbance series. As suggested
by Apley and Kim (2004) and Montgomery et al.
(2000), the IMA(1, 1) time series is appropriate for
modeling disturbances in many industrial processes.
Therefore, we assume dt follows an IMA(1, 1) model,
which takes the form dt+1 = dt + εt+1 − θεt, where
εt is a white noise that follows a standard normal
distribution, εt ∼ N(0, 1).

Note that the linear model is rather representa-
tive in R2R process control and has been consid-
ered by many researchers. Palmer et al. (1996) stud-
ied photolithography processes using experimental
methods and established linear models that take the
same form to illustrate the relationship between re-
sist thickness and spin speed. Sachs et al. (1995) used
a similar linear model in their seminal work on R2R
control. Ruegsegger et al. (1999) modeled the bias in
an etching process with a similar linear model. May
et al. (1991) obtained a linear model with a simi-
lar form to illustrate the anisotropy of an etching
process. Other studies based on similar models are
given in, among others, Patel and Jenkins (2000),
Del Castillo and Hurwitz (1997), and Gower-Hall et
al. (2002).

One practical constraint is that the complete in-
formation about the model is not always available.
When there are no time constraints. For example,
in the experimental phase when the purpose is to

Journal of Quality Technology Vol. 39, No. 4, October 2007



RUN-TO-RUN PROCESS ADJUSTMENT USING CATEGORICAL OBSERVATIONS 315

investigate a new DRIE machine, products can be
carefully measured to collect accurate readings of
yt. However, during the production stage, the time-
consuming metrology procedure to obtain accurate
readings of yt is not feasible. Alternatively, we may
choose to complete the measurement with much
shorter time by collecting qualitative data on a less
accurate categorical scale.

In the following derivation, Yt is used to denote the
readings obtained on a categorical scale. Obviously,
the categorical variable, Yt, is dictated by the input,
ut−1. In order to update the control action to main-
tain the process output on target, it is necessary to
identify the functional relationship between Yt and
ut−1. However, as the two variables are defined on
different scales, experience suggests that a linking
function is difficult to establish directly. Therefore,
we appeal to the modeling strategy with latent vari-
ables. We may consider yt in Equation (1) as a latent
variable to obtain the linear relationship between
ut−1 and Yt. We can then establish a function be-
tween yt and Yt. The detailed procedure is presented
as follows.

At first, a qualified operator examines a resulting
product after a run, possibly with the aid of equip-
ment, and classifies it into one of the m ordered
categories. The value of Yt depends on the magni-
tude of yt, which is usually too difficult or costly to
be observed during R2R production. The higher the
yt, the higher the corresponding categorical value.
Intuitively, there exists a set of prespecified thresh-
olds against which the operator assigns different cat-
egories to the product. This procedure may be illus-
trated by the following relation:

Yt = j ⇔ sj−1 ≤ yt < sj , (2)

where si, i = 1, . . . ,m− 1, are the cutoff parameters
that are placed in the output space of yt, (s0, sm), to
classify each yt into one of m categories. Thus, Yt = j
indicates the output at time t falling into the jth
category, with the lowest category being 1 and the
highest being m. For the case with a process output
unbounded (i.e., no worst and best outputs defined),
the definition in Equation (1) may be modified as

yt = j ⇔






yt < sj j = 1

yt ≥ sj−1 j = m

sj−1 ≤ yt < sj otherwise.

(3)

By putting together Equations (1) and (2), we link
the control action ut−1 with Yt through the mapping

of yt. Next, we will investigate more on quantifying
Yt for control action determination.

Distance Between Categorical
Observations

As yt is usually unobservable during R2R opera-
tion and only Yt is observed, it is important to quan-
tify the changes of Yt, i.e., the distance between out-
put categories, so as to determine the correspond-
ing control action. To quantify the distance between
categories, Wu and Hamada (2000) outlined a data-
based midrank score strategy for ordinal responses.
According to their method, each category is assigned
a score by counting the observed frequencies of the
current category and all other categories with lower
orders. However, the data-based rank may not reflect
the real magnitude of the observations in each cat-
egory. Wu and Hamada (2000) also raised concerns
about this method when a middle category is the
ideal one, and scores are chosen to reflect a cost that
increases in both directions as the category moves
away from ideal.

Here we introduce an alternative definition for the
distance between categorical variables based on the
conditional mean of continuous variables. Let Cj be
the event that yt falls into category j. Analogous to
the definition of the Euclidean distance, we define
the distance between category j and k as

D(j, k) = |E(yt | Cj) − E(yt | Ck)|. (4)

That is, the distance is defined as the difference be-
tween the statistical mean of two continuous vari-
ables given the fact that certain categorical values
have been observed. Here we assume that if Cj hap-
pens, yt follows a normal distribution centered in-
side the boundaries of category j, which implies that
E(yt | Cj) = (sj−1 + sj)/2. Therefore, Equation (4)
can be further expressed as

D(j, k) =
∣
∣
∣
∣
sj−1 + sj

2
− sk−1 + sk

2

∣
∣
∣
∣ . (5)

If, under certain circumstances, the range of the la-
tent variable is not specified or is unbounded, the
distance in Equation (5) may become infinite when
the lowest or the highest category is involved. How-
ever, given the process output, yt, follows a normal
distribution with mean T and variance σ2

y, yt will fall
in the range (T −3σy, T +3σy), with a probability of
99.73%. Thus, it is reasonable to denote s′0 = T−3σy,
s′m = T + 3σy and use the revised boundaries in the
calculation of Equation (5). The section.
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finite limits are required to facilitate the control pro-
cedure to be presented in the next

The Two-Phase R2R Process
Control Strategy

In practice, the latent–model-based strategy for
process adjustments can be implemented in two
phases. Phase I is to understand the process and
to estimate process parameters, which is during the
experimental and set-up stage of an R2R process.
During this phase, each output will be measured on
both continuous and categorical scales, and vectors
in the form of (ut−1, yt, Yt) are expected to be col-
lected. After the Phase I modeling, Phase II is facil-
itated during the regular R2R operation, which is to
incorporate information from the first phase and to
control the process by regulating controllable factors.
During this phase, each output will only be measured
on the categorical scale and (ut−1, Yt) is collected on
an R2R base. In the following, we will introduce the
two phases in detail, and a real case from a DRIE
process is adopted to illustrate their implementation
in practice.

Phase I Modeling of an R2R Process

The modeling and parameter estimation of an
R2R process in Equation (1) has been studied thor-
oughly by using response surface experimental de-
signs (Myers et al. (2004)), ordinary least-square es-
timation (Wu and Hamada (2000)), Ultramax se-
quential process optimization software (Moyne et
al. (1994)), and other treatments (Apley and Kim
(2004)). A literature review can be found in Del
Castillo and Hurwitz (1997) and the references
therein.

The second model to be estimated, Equation (2),
has a slightly different form from the usual linear
regression model. The initial values of the cutoff pa-
rameters may come from prior knowledge, such as
customer specifications. Samples are generated based

on these initial values to train operators. A well-
trained operator can then classify the future prod-
ucts into proper categories. These classification re-
sults during Phase I need to be studied to verify their
consistency with the initial values and to calibrate
the model.

We now take a DRIE process as an example to il-
lustrate the implementation of this phase. DRIE is a
process that involves complex chemical–mechanical
reactions. Here the machine to be studied is an
inductive-coupled plasma (ICP) silicon etcher from
Surface Technology System Ltd. (STS) (see McAuley
et al. (2001), Rauf et al. (2002), and Zhou et
al. (2004) for more details about this system). A
schematic diagram of the system is shown in the Ap-
pendix. The central part of the machine is a process
chamber, within which wafers are loaded and pro-
cessed. The system first releases etching plasma into
the chamber to generate trenches subject to designed
mask patterns; then in the deposition step, different
gases are introduced into the chamber to generate
a protective film on the sidewalls. The etching and
deposition steps repeat alternately until the preset
processing time is reached or the end-point detec-
tion module confirms the correct etching depth. The
etching/deposition procedures are illustrated in Fig-
ure 3a to Figure 3d.

The sidewall profile generated by the process is
one of the major quality characteristics of customers’
concern. Among others, the etching/deposition time
ratio (ED ratio) is an effective factor that dominates
the profile. Therefore, in this case, the ED ratio will
be adjusted from run to run to control the desired
profiles.

In this research, open-loop experiments have been
conducted in Phase I to study the intrinsic prop-
erty of the machine. The control factor of the pro-
cess (ut−1) is the ED ratio. Three levels of the ED
ratio are chosen in the experiment. Corresponds to
each level, six replicates are conducted. The accurate

FIGURE 3. Etching and Deposition Steps of the DRIE Process. (a) Before Etching, (b) an Etching Step, (c) a Deposition

Step, (d) Another Etching Step.
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TABLE 1. Experimental Data from the DRIE Process

ED ratio Sidewall slope (degree) Category
Sample number Etching time (s) Deposition time (s) (ut) (yt) (Yt)

1 5 7 0.71 90.44 2
2 5 7 0.71 90.48 2
3 5 7 0.71 90.45 2
4 5 7 0.71 90.82 3
5 5 7 0.71 90.70 3
6 5 7 0.71 90.73 3
7 7 7 1.00 89.75 2
8 7 7 1.00 89.57 2
9 7 7 1.00 89.57 2

10 7 7 1.00 89.76 2
11 7 7 1.00 89.80 2
12 7 7 1.00 89.51 2
13 11 7 1.57 89.29 2
14 11 7 1.57 88.85 1
15 11 7 1.57 88.97 1
16 11 7 1.57 88.99 1
17 11 7 1.57 88.79 1
18 11 7 1.57 88.93 1

slope reading of each wafer (yt) is shown in Table 1.
Note that the wafer measurements on both continu-
ous and categorical scales are considered as a set-up
cost, which only applies to Phase I, not to Phase II,
and thus is affordable in this case.

A regression analysis of the data has suggested
α = 91.7 and β = −1.8 in model (1). The R2 value is
88.5%, which shows that the data is adequately rep-
resented by the linear model. Regarding the IMA(1,
1) disturbance series, the procedure suggested by Ap-
ley and Kim (2004) has been followed. The process
input was held constant, so that the output was the
effect of a disturbance process plus a constant. Based
on that, an IMA(1, 1) model was fitted to the output
series to estimate θ. Results show that an IMA(1, 1)
disturbance with θ = 0.6 fits our process well.

Besides the accurate reading yt, each wafer is also
classified into one of three categories: negative (1),
normal (2), positive (3) by a trained operator. Us-
ing the categorical information, Yt, as a dependent
variable and the accurate readings, yt, as an explana-
tory variable, a classification tree can be fitted to the
dataset using standard tree algorithms (Hastie et al.
(2001)). In the DRIE process, we have used the com-

mercial software S-PlusTM to generate the classifica-
tion tree. The analysis results show that the negative
and normal categories are separated by s1 = 89.14,
while the normal and positive categories are sepa-
rated by s2 = 90.59, which are quite consistent with
the customer specifications. The desired target value
is T = 90, and the output space of the slope is chosen
to be s0 = 87 and s3 = 93, according to the knowl-
edge and experience of process engineers. All these
process parameters will be used for R2R process reg-
ulation in Phase II.

Note that as the classification is usually based
on human operators, a gage repeatability and repro-
ducibility (gage R&R) study is required to ensure
the consistency of the operators’ performance before
moving to Phase II. The procedure of measurement
system analysis (MSA) for bounded ordinary data
may be found in de Mast and van Wieringen (2004)
and the references therein. In our demonstrated case,
the operator’s performance is rather consistent and
the gage R& R is satisfactory. The gage R&R per-
formance can surely be improved by purchasing a
metrology system producing an image and also au-
tomatically quantifying the attributes of that image,
although this alternative could be costly.
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Phase II Adjustments of an R2R Process

Phase II of the proposed R2R process control
strategy is to generate a recipe for each run to meet
a specific criterion, minimize process variance, and
also lessen regulation efforts, according to available
categorical information. The major difference of the
proposed strategy from conventional R2R strategies
is the assumption that no accurate/continuous out-
put measure, but categorical information, is available
from run to run. A novel control algorithm for such
a situation is developed as the following. Again, the
DRIE process is used for illustration in this Phase.

Let Ft be a set that comprises the cumulative in-
formation collected up to the present step, Ft = {Yt,
Yt−1, . . . , ut−1, ut−2, . . .}. That is, at step t, all the re-
sponses and covariates in Ft are known. The purpose
of the controller is to minimize the deviation between
the real process output and the target. Therefore, we
define the following quadratic loss function by con-
ditioning on known information:

L = E[(yt+1 − T )2 | Ft], (6)

where yt+1 is the output that will happen at step t+1
and T is the target value, which is also the center
of the target category. The loss function penalizes
the squared one-step ahead deviation between the
real output and the target value given all the past
control actions and categorical responses. Thus, the
objective of the new recipe, ut, is to minimize such a
function.

Here we subtract T from both sides of model (1)
and multiply it by (1 − θB)−1(1 −B) to obtain

(1−θB)−1(1−B)(yt+1−T ) = β(1−θB)−1∆ut+εt+1,
(7)

where B is a back-shift operator such that Byt+1 =
yt, (1 − B)α = 0, and (1 − B)T = 0. Knowing that
(1−θB)−1(1−B) = 1−(1−θ)(1−θB)−1B, Equation
(7) can be rewritten as

yt+1 − T = (1 − θ)(1 − θB)−1(yt − T )
+ β(1 − θB)−1∆ut + εt+1, (8)

where ∆ut = ut − ut−1 is the relative amount of
adjustment comparing with the previous run, i.e., the
adjustment of the ED ratio in the DRIE process.

From the iterated conditional expectation formula
E(Y | X1) = E[E(Y | X1;X2) | X1], the loss func-
tion (6) can be written as

L = E[E((yt+1 − T )2 | yt;Ft) | Ft]
= E[E(((1 − θ)(1 − θB)−1(yt − T )

+ β(1 − θB)−1∆ut + εt+1)2 | yt;Ft) | Ft]
= E[((1 − θ)(1 − θB)−1(yt − T )

+ β(1 − θB)−1∆ut)2 + σ2
ε | Ft]. (9)

In Equation (9), yt is a random variable with un-
known value. However, taking expectation over yt

will remove the dependence on it. We can then take
the derivatives of (9) with respect to ∆ut, set it to
zero, and obtain the following optimal adjustment
action:

∆u∗
t = − (E(yt | Ft) − T )(1 − θ)

β
. (10)

The minimized loss function is obtained by apply-
ing the optimal control action, Equation (10), to the
objective function, Equation (9):

L∗ = e[((1 − θ)(1 − θB)−1(yt − T )
+ β(1 − θB)−1∆u∗

t )
2 + σ2

ε | Ft]

= E

[(

(1 − θ)(1 − θB)−1(yt − T )

+ β(1 − θB)−1 (E(yt | Ft) − T )(1 − θ)
β

)2

+ σ2
ε | Ft

]

= E[((1 − θ)(1 − θB)−1(yt − E(yt | Ft)))2

+ σ2
ε | Ft]

= (1 − θ)2(1 − θB)−2E[(yt − E(yt | Ft))2 | Ft]
+ σ2

ε

= (1 − θ)2(1 − θB)−2Var(yt | Ft) + σ2
ε . (11)

From the definition of the categorical distance in
Equation (4), one can observe that the nominator
of the optimal controller, Equation (10), is dictated
by the distance between the observed category and
the target category. Assuming the last observation
falls into category j, Yt = j, the expected location of
the real output will take the following form:

E(yt | Ft) = E(yt | Cj) = (sj−1 + sj)/2. (12)

Therefore, the control action, Equation (10), can be
expressed as

∆u∗
t = − ((sj−1 + sj)/2 − T )(1 − θ)

β
. (13)

By substituting the values estimated from Phase I
for the parameters in Equation (13), the categorical
controller can be implemented easily as the following:

∆u∗
t =

{ 0.4289 if Yt = 1
0 if Yt = 2
−0.3989 if Yt = 3.

(14)
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Note that, if the observation falls into the target cat-
egory, no adjustment would be necessary.

In practice, the true values of the parameters in
Equation (13) are not known exactly. Therefore, it is
of interest to study the impact of estimation uncer-
tainties on the categorical controller. We now assume
θ, α, and β are all random variables and denote their
estimated values by θ̂, α̂, and β̂, respectively. The
controller aims to minimize the following objective
function:

L = E
θ,α,β,εt+1

[(yt+1 − T )2 | Ft], (15)

in which the expectation is taken over all the un-
known parameters.

Although a nonlinear function between (yt+1−T )
and θ has been obtained in Equation (8), this func-
tion is too complex to be solved analytically. Follow-
ing the method suggested by Apley and Kim (2004),
we adopt the first-order Taylor expansion to approx-
imate the loss function. As in Equation (8), α is can-
celled out, we take partial derivatives of (8) with re-
spect to parameters β and θ that yield

∂(yt+1 − T )
∂β

∣
∣
∣
∣
θ=θ̂,β=β̂

= (1 − θ̂B)−1∆ut (16)

and
∂(yt+1 − T )

∂β

∣
∣
∣
∣
θ=θ̂,β=β̂

= −(1 − θ̂B)−1(yt − T )

+ (1 − θ̂)(1 − θ̂B)−2B(yt − T )

+ β̂(1 − θ̂B)−2B∆ut

= −(1 − θ̂B)−1

× ((yt − T ) − (1 − θ̂)(1 − θ̂B)−1B(yt−1 − T )

− β̂(1 − θ̂B)−1∆ut−1)

= −(1 − θ̂B)−1ε̂t. (17)

The last equality holds from Equation (8). Thus, the
first-order Taylor approximation of yt−1 − T about
θ = θ̂, β = β̂ is

yt+1 − T ≈ (1 − θ̂)(1 − θ̂B)−1(yt − T )

+ β̂(1 − θ̂B)−1∆ut + εt+1

+ (β − β̂)
∂(yt+1 − T )

∂β

∣
∣
∣
∣
θ=θ̂,β=β̂

+ (θ − θ̂)
∂(yt+1 − T )

∂β

∣
∣
∣
∣
θ=θ̂,β=β̂

= (1 − θ̂)(1 − θ̂B)−1(yt − T )

+ β̂(1 − θ̂B)−1∆ut + εt+1

+ (β − β̂)(1 − θ̂B)−1∆ut

− (θ − θ̂)(1 − θ̂B)−1ε̂t. (18)

Substituting Equation (18) for yt+1 − T in the loss
function, Equation (15), yields

E
θ,α,β,εt+1

[(yt+1 − T )2 | Ft]

= E
yt

{[(1 − θ̂)(1 − θ̂B)−1(yt − T )

+ β̂(1 − θ̂B)−1∆ut]2

+ σ2
ε + (1 − θ̂B)−2∆u2

tσ
2
β

− (1 − θ̂B)−2ε̂2
tσ

2
θ | Ft}, (19)

where σ2
ε , σ2

β , and σ2
θ are the variances of εt+1, β,

and θ, respectively. Here we may assume that β and
θ are independent. That means, in Phase I, the ex-
periments are conducted with open-loop operations
and without feedback. Setting the partial derivatives
of Equation (19) with respect to ∆ut equal to zero
and solving for (∆ut) gives the following optimal con-
troller:

∆u∗
t = − (1 − θ̂)(E(yt | Ft) − T )

β̂(1 + σ̂2
β/β̂)

, (20)

which is the optimal control action when considering
parameter uncertainties.

If we substitute the values estimated from Phase I
for the parameters in Equatiion (20), the alternative
control action is given by the following:

∆u∗
t =






0.4254 if Yt = 1

0 if Yt = 2

−0.3957 Yt = 3.

(21)

We call this a cautious categorical controller, as
it is consistent with the idea of cautious control
in the engineering process control (EPC) literature
(Astrom and Wittenmark (1995) and Jin and Ding
(2004)). Equation (20) shows that, with the con-
sideration of uncertainties in parameter estimation,
σ̂2

β > 0, the control action is always more conser-
vative than that obtained from the original categor-
ical controller in Equation (10). This is confirmed
by comparing Equation (21) to Equation (14). If the
variance of parameters can be ignored, i.e., σ̂2

β = 0,
the cautious categorical controller would reduce to
the ordinary categorical controller in Equation (10).
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A Discussion on the Categorical Controller
Design

A practical issue to be solved is the determination
of the number of categories. There may be no uni-
versal guidelines for various applications. However,
there are two critical criteria that should be consid-
ered in choosing the number of categories: one is that
they have to be physically meaningful and the other
is that they should be practically distinguishable.

In the DRIE example, all profiles that fall into the
(89.14, 90.59) range are considered acceptable by the
customer. Therefore, wafers with slopes in this rage
are classified as one category. Further classification
within this range may not be physically meaningful,
as they are all good wafers. Furthermore, if the slope
of a wafer falls outside this range, we classify it as ei-
ther a negative or a positive wafer. In a stable etching
process, most slopes are between (87, 93). For neg-
ative wafers, their slopes are within (87, 89.14); for
positive wafers, their slopes are within (90.59, 93). It
would be hard for us to further classify within the two
degree ranges, as human operators cannot tell such a
small difference. The ranges may become practically
indistinguishable.

As a prerequisite, accurate output data should be
collected in Phase I in order to build a useful process
model for the R2R control in Phase II. If in some
circumstances the quality characteristic of interest
cannot be accurately measured even in Phase I, one
may consider utilizing a surrogate variable to replace
the original variable. The technique of using surro-
gate variables may be found in Kwon et al. (2001)
and p. 442 of Wu and Hamada (2000).

Performance and Stability Analysis

After proposing the categorical R2R controller, in
this section, we investigate its performance in terms
of minimizing the mean square error (MSE) deviated
from the desired target. We also investigate the con-
troller’s stability, as the stability of a controller de-
termines its robustness to uncertainties in parameter
estimation and unexpected changes of processes.

Because wafer etching is a time-consuming, costly,
and unrepeatable operation, it is not practical for
us to apply different controllers to the same wafer
to compare their performances. Therefore, we apply
Monte Carlo simulations based on the real context
and process model of DRIE from the previous section
to study the performance and stability of the pro-
posed controller. The model parameters estimated

from the Phase I experiments are treated as their
true values in the simulation. Each simulated pro-
cess is run for 200 steps, and 100 replicates for each
parameter setting are used to calculate the average
MSE.

Given an initial control action u0, a categorical
controller updates recipes using Equation (10). At
time t, the process input becomes

ut = u0 −
t∑

i=1

(E(yt | Ft) − T )(1 − θ)
β

= u0 −
(1 − θ)

β

t∑

i=1

(E(yi | Fi) − T ), (22)

which shows an integral form that sums up all output
deviations.

Consider a conventional EWMA controller with
smoothing parameter 1 − θ, the control action can
be written as (see Sachs et al. (1995)):

∆ut = −1 − θ

β
(yt − T ), (23)

or equivalently,

ut = u0 −
1 − θ

β

t∑

i=1

(yi − T ). (24)

Comparing Equation (22) to Equation (24) suggests
that the categorical controller, similar to the EWMA
controller, is also an integral-type controller. It is
known that the EWMA controller is popular for
the R2R process with accurate/continuous outputs,
and with the smoothing parameter, 1 − θ, it is also
the optimal in terms of minimizing MSE for a pro-
cess with IMA disturbances (Ingolfsson and Sachs
(1993)). Thus, in the following study, we will use the
optimal EWMA controller as a benchmark (i.e., the
best performance assuming that the accurate output
information is available) to compare to the proposed
categorical controller (where only categorical infor-
mation is available).

Performance Analysis Under Parameter
Estimation Uncertainties

In the categorical controller (13), estimated pa-
rameters are used for recipe generation. However,
as estimation uncertainties always exist, it is worth
knowing how the controller will perform if the esti-
mated parameters are different from their true val-
ues. In the first simulation study, both parameters, β̂
and θ̂, vary around their respective true values. Here
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FIGURE 4. Etching and Deposition Steps of the DRIE

Process. (a) Before Etching, (b) an Etching Step, (c) a

Deposition Step, (d) Another Etching Step.

the MSE is used as a criterion to evaluate the per-
formance and stability of each process and is shown
in Figure 4.

As can be seen in Figure 4, both changes in θ̂ and
β̂ have significant impact on the process MSE. In
addition, interactions exist between θ̂ and β̂ as the
curves are not parallel. More specifically, when β̂ is
close to zero, a small increase in the parameter will
cause a significant increase in MSE. This may be ex-
plained by Equation (13) of the categorical controller
that, when the absolute value of β̂ is small, any de-
viation in the output will be magnified and lead to
excess adjustments, which in turn results in serious
output oscillations. While if β̂ is overestimated, a
more conservative control action will be made and
the resulting controller would be rather insensitive
to the parameter changes.

To jointly investigate the effects of θ̂ and β̂, we
further define a gain parameter,

g = β(1 − θ̂)/β̂. (25)

Consequently, the categorical controller Equation
(13) can be rewritten as

∆u∗
t = − g

β
((ŝj−1 + ŝj)/2 − T ). (26)

The purpose of adopting the gain parameter is to en-
compass all parameter-estimation uncertainties and
to standardize the figures, as being utilized in the
EPC literature, e.g., Apley and Kim (2004). In the
following, the controller stability is investigated by
changing the gain parameter. Based on that, the fig-
ures presented will be influenced by the relative esti-
mation accuracy only, but not by the absolute value

of the parameters. Therefore, these figures become
more representative and comparable.

Figure 5a presents the MSE of both the pro-
posed categorical controller and the EWMA con-
troller with the smoothing parameter, 1 − θ, under
various gain parameters. As expected, the EWMA
controller, which is optimal for the IMA disturbance,
achieves the minimum variance at g = 0.4, on which
the parameters take their true values. When the
gain parameter goes toward either direction, MSE in-
creases in both controlled processes. We observe that,
when the deviation of the gain parameter is small,
both the categorical and EWMA controllers perform
rather similarly. However, when the gain parameter
deviates over a large range, the performance of the
EWMA controller degrades rapidly, while that of the
categorical controller is not affected as much. This
suggests that the proposed categorical controller per-
forms well and more stable over a larger range of g
and thus is more robust to parameter estimation er-
rors.

Performance and Stability Influenced by
Measurement System Capability

As many categorical observation-generation pro-
cedures involve human operators, it is critical to in-
vestigate how such a measurement system influences
the control performance and stability. In this study,
gage reproducibility and repeatability are not explic-
itly separated because the operators are considered
as part of the gages for output evaluation and clas-
sification.

Equation (2) is the model upon which qualitative
observations are generated. The measurement system
could be questionable if the cutoff parameters are
not quite consistent from run to run, although it is
usually the case for a human operator system. In the
simulation, we assume si ∼ Unif(siT − υ/2, siT +
υ/2). That is, each cutoff parameter varies within an
interval of width υ around its true value. The larger
the υ, the more unstable the classification system.

Again, the true cutoff parameters are assumed to
be s1 = 89.14 and s2 = 90.59, and the interval be-
tween these two lines is H = 1.45. Using this value
as a reference, we choose υ to be a certain percent-
age of H. Each curve in Figure 5b shows the MSE
of a particular υ value. When υ increases, the curve
moves upward accordingly. This is not unexpected
because a larger υ means a less stable measurement
system. Poor consistency in the measurement system
leads to an increase in process variance. However, the
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FIGURE 5. MSE Comparison of the Categorical Controller and the EWMA Controller. (a) With an IMA(1, 1) Noise Series,

(b) with Measurement System Uncertainties, (c) with an ARMA(1, 1) Noise Series, (d) with Deterministic Drifts.

results show that, even if υ = 200%H, which means
the cutoff parameter varies as wide as twice H, the
increase of MSE in a categorical controlled process is
still relatively small, especially for a small g.

Performance and Stability Under Model
Structure Uncertainties

The optimal control action, Equation (10), is de-
rived from model (1), in which the noise is assumed
to be an IMA(1, 1) process. Although the IMA model
is a very popular and useful assumption about pro-
cess disturbance (see Apley and Kim (2004), Tseng
et al. (2003)), the real model may not always be the
same in practice. Therefore, it is worth studying the
performance of the categorical controller when a dif-
ferent disturbance model is presented.

In the following simulation, we assume that the
noise series follows a first-order autoregressive mov-
ing average (ARMA) model, which is another popu-

lar model in the literature (Apley and Kim (2004)),
i.e., dt+1 = φdt+εt+1−θεt. Figure 5c shows the MSE
of the categorical controller and the EWMA con-
troller when the disturbance process is an ARMA(1,
1) model with, say, φ = 0.8 and θ = 0.2 as an exam-
ple.

As shown in Figure 5c, when the gain parameter
varies from zero to a larger value, MSE decreases first
and then slowly increases. A careful examination on
this figure indicates that the minimal MSE of both
controllers is not reached at g = 1 − θ, which sug-
gests that, when the model structure changes, the
optimal setting obtained from the assumed model
cannot achieve the best performance. In addition,
the MSE curve of the categorical controller is much
flatter than that of the EWMA controller, which sug-
gests that the categorical controller has a larger sta-
bility region and is more robust to model-structure
changes.
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Performance and Stability Under Process
Drift

Besides the changes in the disturbance series
model, it is of interest to investigate the performance
of the proposed controller under different types of
process faults. One common failure in R2R processes
is deterministic drifts (Sachs et al. (1995), Ingolfsson
and Sachs (1993)). The following model illustrates
such a process,

yt = α + βut−1 + δt + dt, (27)

where δ is the drifting parameter. If left uncontrolled,
the process will gradually deviate away from its tar-
get.

Figure 5d shows the MSE of processes that un-
dergo deterministic drifting disturbances. The drift-
ing parameter δ is set to 0.4. Again, the EWMA
controller is used for comparison. Simulation results
show that both the categorical controller and the
EWMA controller can reduce process variance if ap-
propriate settings are utilized. In addition, the cat-
egorical controller performs closely to the EWMA
controller in terms of MSE when the g value is small,
while the MSE curve of the categorical controller is
much flatter when the g value is large. This again
indicates the robustness property of the categorical
controller over a large range of g.

Adjustment Effort and Cautious
Control with a Categorical Response

Most conventional controllers, including the
EWMA controller, regulate a process by changing its
process input recipe at the end of every run. However,
in addition to the MSE reduction, practical industrial
applications always favor fewer recipe changes so as
to reduce operational cost (Del Castillo and Hurwitz
(1997)). The proposed categorical controller, on the
other hand, does not regulate the process input at
every run. When the previous output falls into the
target category, no regulation will be made. In the
following simulation, the categorical controller and
the EWMA controller are compared in terms of both
their MSE and average adjustment interval (AAI).
AAI is a performance measure to indicate how fre-
quent the recipe changes, with the longer the interval
being better.

Simulations based on the DRIE process with 100
replicates are conducted, and the average values are
presented in Table 2. Without any adjustments, al-
though the operational cost is reduced, the process

TABLE 2. A Comparison of Different Control Schemes

Controller MSE AAI

No adjustment 15.872 *
EWMA controller 0.995 1
Cat. controller 1.084 2.082
Cautious cat. controller 1.082 2.086

exhibits unacceptably large variance. The EWMA
controller gives the lowest MSE, although it is just
slightly better than that of the categorical controller.
In terms of the adjustment effort, the AAI of the
categorical controller is around two times that of the
EWMA controller. It means that the EWMA con-
troller changes the recipe twice as frequently as the
categorical controller and thus bears higher opera-
tional cost.

An illustration of the recipe trajectories are shown
in Figure 6. As the figure indicates, the recipe of the
categorical controller is flat in many small segments,
which suggests that no adjustment to the recipe is
made. However, the EWMA shows a zigzag recipe
trajectory, where many recipe updates seem unnec-
essary.

A Cautious Categorical Controller

Apley and Kim (2004) conducted extensive stud-
ies on the cautious controller for the situation when
the real-time continuous output information is avail-
able. Such a cautious controller has more conserva-
tive control actions but is proven to have a higher
probability of closed-loop stability than the standard

FIGURE 6. AAI Comparison of the Categorical Controller

and the EWMA Controller.
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minimum variance controller and can lessen the ad-
verse impact of parameter uncertainties on closed-
loop variance.

Similarly, the cautious categorical controller given
by Equation (20) suggests more conservative control
actions by adding the variance component to the de-
nominator of the equation. This scenario is equiv-
alent to overestimating the parameter β. Also, an
investigation of the gain parameter in (25) reveals
that, given the true value of β, the larger the β̂, the
smaller the gain parameter becomes for an ordinary
categorical controller.

Here we compare the control action of the cautious
categorical controller with that of the ordinary cate-
gorical controller and the EWMA controller in Table
2. As we can see, it seems that the cautious categori-
cal controller performs very similarly to the ordinary
categorical controller in terms of both MSE and AAI.
This is because the ordinary categorical controller
is already rather robust to the uncertainties of the
gain parameter. Therefore, the cautious categorical
controller does not bring much further improvement.
However, if it is known that a high uncertainty ex-
ists in parameter estimation, a cautious categorical
controller may be recommended because increasing
β̂ from its true value would give a slower change in
MSE than decreasing β̂. Thus, the cautious categor-
ical controller could be safer in the sense that it is
less likely to make the process become unstable.

Conclusion

This paper has proposed a categorical controller
to regulate R2R processes when ordinal categorical
observations rather than when quantitative observa-
tions are collected. The proposed method can greatly
enhance the ability of operators to control an R2R
process by using qualitative information in an effec-
tive way.

A two-phase design and implementation strat-
egy has been introduced and demonstrated by a
DRIE R2R process. In Phase I, with both qualita-
tive and quantitative measurements available, off-line
experiments have been designed and conducted for
model building and parameter estimation. In Phase
II, when only qualitative observations are available,
a categorical controller or a cautious categorical con-
troller has been developed for process regulation.

Simulation results show that the categorical con-
troller, without using accurate output information,
can significantly decrease process variance and is

comparable to the optimal EWMA controller. Also,
the categorical controller has been shown to be more
robust to parameter estimation and model-structure
uncertainties. In addition, the categorical controller
requires much less frequent adjustments than the
EWMA controller. This is obtained with little in-
crease in MSE, which leads to lower operational cost.

This paper has developed a novel method that in-
corporates categorical observations into R2R process
adjustments. This work falls into the general frame-
work of statistical process adjustment advocated by
Del Castillo (2006). Del Castillo (2006) also identi-
fied that categorical variables may sometimes appear
as regressors. In practice, many applications have
both qualitative and quantitative variables. Integrat-
ing delayed measurements (due to metrology delay)
with real-time categorical information is also an area
open for future research in R2R control.
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Appendix

FIGURE A.1. Schematic Diagram of an STS Inductively

Coupled Etch System.
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