
Reliability Engineering and System Safety 211 (2021) 107592

Available online 11 March 2021
0951-8320/© 2021 Elsevier Ltd. All rights reserved.

Generalized condition-based maintenance optimization for 
multi-component systems considering stochastic dependency and 
imperfect maintenance 

Jun Xu , Zhenglin Liang *, Yan-Fu Li , Kaibo Wang 
Industrial Engineering Department at Tsinghua University   

A R T I C L E  I N F O   

Keywords: 
K-out-of-N: G system 
stochastic dependency 
imperfect maintenance 
copula 
Markov decision process 

A B S T R A C T   

With the development of sensor and communication technology, condition-based maintenance (CBM) attracts 
increasing attention, especially for multi-component systems. This paper aims to investigate the optimal CBM 
policy under periodic inspection for a K-out-of-N: G system, where economic dependency, stochastic dependency 
and imperfect maintenance are emphasized. The objective is to minimize the expected long-run discounted cost. 
In the model, the cumulative degradation of each component is modeled by heterogeneous stochastic processes, 
the dependence among all components is characterized by a copula function, and the imperfect maintenance is 
represented by a reduction in the degradation level. Since the system has Markov property, we solve the CBM 
optimization problem based on Markov decision process (MDP) framework. To ease the computation burden, we 
discretize the continuous state space and then use the value iteration algorithm with Monte Carlo simulation to 
find the optimal inspection interval and the optimal CBM policy. Numerical studies for a 1-out-of-2: G system are 
conducted to systematically examine the impacts of degradation processes, copula functions and imperfect 
maintenance on the optimal maintenance decisions, which provides insights for multi-component system 
maintenance. A sensitivity analysis of cost-related parameters is also performed.   

1. Introduction 

Maintenance is important for managing system reliability, prevent-
ing system failures and improving the effectiveness of system opera-
tions. Maintenance policies can be generally classified as Time-Based 
Maintenance (TBM) and Condition-Based Maintenance (CBM) policies, 
and in both categories, one can deal with Corrective Maintenance (CM) 
and Preventive Maintenance (PM) [1]. TBM is scheduled based on a 
specific lifetime model over elapsed time, while CBM makes use of both 
degradation models and collected sensor data that can represent the 
system health conditions. 

To perform CBM, the first critical step is to properly model the 
degradation process. Systems with discrete-state degradation are usually 
modeled by Markov processes. The corresponding CBM problems are 
formulated as Markov decision processes (MDPs) or its variants and then 
solved by standard algorithms. With the enrichment of the degradation 
data collected from sensors, we are able to model the degradation pro-
cess with continuous states, which can be more accurate and flexible. 
For such degrading systems, Wiener process, Gamma process and 

Inverse Gaussian (IG) process [2,3] are three commonly used stochastic 
degradation models. For example, Wiener process and IG process have 
been applied to GaAs laser degradation and fatigue crack growth [4,5], 
and Gamma process has been used to model the corrosion of feeder pipes 
[6] in practice. In this study, all the above three stochastic processes are 
investigated and we consider the heterogeneous case. 

Existing CBM literatures mainly focus on single-component systems, 
because for multi-component systems, the probability analysis and the 
optimal maintenance decisions are much more complex [7]. If there is 
only one critical component in the system, or if a one-dimensional 
“health index” is used, the CBM policy for the single-component sys-
tem may be applicable to the multi-component system [8]. However, 
many systems in practice contain multiple critical components and using 
a one-dimensional “health index” is insufficient. Thus, it is necessary to 
develop proper CBM policies for multi-component systems, where 
various types of dependency among components need to be considered 
[9]. First, economic dependency indicates that the costs can be reduced 
when several components are maintained together. Second, structural 
dependency indicates that some working components have to be 
replaced or removed in order to repair some failed components. Third, 
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stochastic dependency indicates that the failure or deterioration of one 
component can affect the degradation processes of other components. In 
this study, the economic dependency is incorporated in the optimization 
objective and the stochastic dependency is specially emphasized. 

To model the stochastic dependency, researchers have focused on 
different aspects, such as the failure dependence [10], degradation 
dependence [7], degradation rate dependence [9,11], and shock 
dependence [12]. In this study, we use a copula function to characterize 
the dependence structure among all components. Copula function has 
been widely used in modeling failure dependence [10,13] and degra-
dation dependence [14,15] in recent literatures. For example, Safaei 
et al. [13] investigated the age replacement policy for repairable series 
and parallel systems with n dependent components by using three types 
of copula function to model the dependence structure among the life-
time distributions. Liu et al. [15] proposed a life cycle model for systems 
subject to multiple dependent Gamma processes and considered the 
environmental influence on the degradation rate and failure threshold, 
where Clayton copula was used to characterize the dependence among 
degradation increments. In addition, Mireh et al. [16] considered the 
dependence between the Gamma degradation process and Weibull 
distributed hard failure time by Frank copula function. 

Based on the identified system degradation model, the optimal 
maintenance decisions can be constructed according to certain criteria 
(such as cost, availability, reliability, etc.). The optimal decisions often 
involve two aspects: inspection schedule and maintenance policy. The 
majority of CBM problems assume perfect inspection with continuous, 
periodic or non-periodic review, and sometimes imperfect inspection 
may be more realistic because there may exist inspection error [17]. As 
for maintenance policy, opportunistic maintenance policy [18,19] and 
dynamic grouping maintenance policy [20,21] are two popular CBM 
policies for multi-component systems. Under opportunistic maintenance 
policy, the maintenance of some components may provide an opportu-
nity for the maintenance of the remaining components, which can 
reduce the maintenance cost. Under dynamic grouping maintenance 
policy, components in the system are partitioned into several groups, 
where the maintenance is performed on all the components in one group 

to save setup cost. Genetic algorithm [22] and dynamic programming 
[23] are also applied to find the optimal maintenance policy. 

The maintenance policy is influenced by the degree of maintenance 
as well. The perfect maintenance is easy to analyze, but most PM ac-
tivities in real world are imperfect. The imperfect maintenance restores 
the health condition of a degrading system to any degradation level 
between as-good-as-new and as-bad-as-old [24]. Recently, Sun et al. 
[25] investigated the optimal CBM strategy for a K-out-of-N: G system 
with N identical and independent components under periodic inspec-
tion. In their model, the degradation of each component was assumed to 
follow a Wiener process and Markov decision framework was used to 
find the optimal inspection interval and maintenance strategy to mini-
mize the total cost. Inspired by the approach of Sun et al. [25], we make 
efforts to bring the model closer to reality by emphasizing the stochastic 
dependency among all components and considering imperfect 
maintenance. 

In this study, we aim to investigate the optimal CBM policy under 
periodic inspection for a K-out-of-N: G system with imperfect mainte-
nance. Comparing to the extant literature, the main contributions are as 
follows: (1) we propose a CBM modeling framework that incorporates 
economic dependency, stochastic dependency and imperfect mainte-
nance, which can be extended to other multi-component maintenance 
problems; (2) we utilize the MDP framework with Monte Carlo simu-
lation to find the optimal maintenance decisions of K-out-of-N: G sys-
tems with stochasticity, heterogeneity, and dependency; (3) we 
systematically examine the impacts of degradation processes (including 
the non-monotonic Wiener process and monotonic Gamma process and 
IG process) and copula functions on the optimal maintenance decisions; 
(4) we investigate the impacts of imperfect maintenance on the optimal 
maintenance decisions and conduct comprehensive sensitivity analysis. 

The rest of the paper is organized as follows: In Section 2, we detail 
the multi-component degrading system and the maintenance settings by 
emphasizing stochastic dependency and imperfect maintenance. In 
Section 3, we utilize the MDP based method to solve the proposed CBM 
optimization problem. In Section 4, numerical studies for a 1-out-of-2: G 
system are conducted to systematically examine the impacts of 

Notations 

K Minimum number of working components for the system 
to work 

N Number of components in the system 
Yi(t) Degradation level of component i at time t 
Y(t) Vector of the degradation levels of all components at time t 
dri Mean degradation rate of the degradation process of 

component i 
Li Predetermined failure threshold for component i 
Ti Failure time of component i 
T Failure time of the system 
C (⋅) Copula function 
I (⋅) Independence copula 
τ Kendall’s tau for a bivariate copula 
Yi(t−0 ) Degradation level of component i immediately before PM 

at time t0 
PMi,Yi(t−0 ) Reduction in the degradation level when performing PM 

on component i at time t0 
pi Probability that component i after PM is as-good-as-new 
δ Inspection interval 
ci Inspection cost 
cc CM cost 
cd Downtime cost per time unit 
cs Shared setup cost for PM 
cp PM cost for one component 

r Discount factor 
Iδ Expected long-run discounted inspection cost under δ 
yi Degradation level of component i upon inspection 
y Vector of yi 
Vδ(y) Expected long-run discounted maintenance cost in state y 

under δ 
S Set of all degradation states 
SF Set of all system failure states 
A(y) Set of all actions available in state y 
πδ(y) Action taken in state y under deterministic CBM policy πδ 

yA
i Degradation level of component i immediately after taking 

action 
yA Vector of yA

i 

y′

i Degradation level of component i upon the next inspection 
y′ Vector of y′

i 

C(y,a,yA,y′

) Expected cost of transition from state y to yA after 
taking action a, and finally to y′

Dδ(yA,y′

) Expected downtime cost in state yA and transition to state 
y′ under δ 

Dδ(yA) Expected downtime cost between two successive 
inspection epochs in state yA under δ 

TyA Failure time of the system with initial state yA 

Qδ(y,a) Expected long-run discounted maintenance cost in state y 
taking action a under δ  
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degradation processes, copula functions and imperfect maintenance on 
the optimal maintenance decisions, and the application of the proposed 
framework in general K-out-of-N: G systems is illustrated with a 2-out- 
of-3: G system. Sensitivity analysis on cost-related parameters is also 
carried out. Finally, we conclude this study and discuss some future 
research directions in Section 5. 

2. System degradation modeling 

2.1. Basic system description and assumptions 

The system under study is a K-out-of-N: G system with N dependent 
components subject to degradation. Let Yi(t), i = 1,2,…,N denote the 
degradation level of component i at time t. Typically, the initial degra-
dation level for a brand new component is zero, that is, Yi(0) = 0, i = 1,
2,…,N. The system will fail if less than K components work in normal 
conditions. Periodic inspections are carried out with interval δ and cost 
ci. If the system is found failed, CM is performed immediately with CM 
cost cc and downtime cost cd per time unit. Otherwise, a CBM policy is 
used to decide which components to be maintained by PM: If PM is 
performed on n components, n = 1,2,…,N, a shared setup cost cs and PM 
cost cp for each component will be incurred, which is cs +ncp totally. The 
overall assumptions are listed below. 

Assumptions about degradation processes 

A1. Component i fails if its degradation level reaches a predetermined 
failure threshold Li, i.e., Yi(t) ≥ Li, i = 1,2,…,N. 

A2. The degradation process for each component follows a stochastic 
process with independent increments. Wiener process, Gamma process 
and IG process are considered in this study, as they are commonly used 
in degradation modeling and have complementary properties [3]. 
Wiener process is non-monotonic and can represent systems that have a 
self-recovery nature, while Gamma process and IG process are mono-
tone. Please see Section 2.2 for a brief introduction. 

A3. Degradation dependence can be characterized by a copula func-
tion. Copula is widely used for representing multiple dependent sto-
chastic processes in system engineering. Please see Section 2.3 for 
details. 

Assumptions about maintenance actions 

A4. The conditions of the studied system are not self-announcing. As a 
result, component failure and system failure can only be detected upon 
inspection. 

A5. The time for inspections and the time for maintenance actions are 
negligible comparing with the degradation process and the interval 
between two successive inspections. 

A6. CM is perfect. CM here is equivalent to the replacement of the 
system. When the system fails, all remaining components are also seri-
ously damaged that are cost-ineffective/unable to be restored by PM. 
Thus, an entire replacement is required. When the system remains 
operating, the failure of components has less effect on other compo-
nents. This dependence can be modeled as a copula function. 

A7. PM is imperfect, the damage reduction of imperfect maintenance 
is represented by a random variable and the damage reductions of 
different components are independent. On the one hand, imperfect 
maintenance is more general in real-world, under which it is nearly 
impossible to restore the component as-good-as-new. On the other hand, 
there are many uncertainties in PM, such as the various causes of failure, 
the proficiency of maintenance workers, the fluctuation of maintenance 
tools and equipment, and the complex ambient conditions, etc. As a 
result, even if the degradation levels of several components before PM 

are identical, their degradation reductions after PM are not necessarily 
the same. Therefore, it is reasonable to model the degradation reduction 
of imperfect maintenance by a random variable. Please see Section 2.4 
for details. 

A8. We further assume that the maximum PM cost (i.e., PM is per-
formed on all N components when the system is normal) is less than the 
CM cost: cs + Ncp < cc. This assumption is reasonable because the 
replacement of a system (CM) is usually more expensive than PM. 

Based on the above system configurations, the optimization objective 
is to find the optimal inspection interval δ* as well as the optimal CBM 
policy to minimize the economic criterion. 

2.2. Cumulative degradation process 

For an individual component, we model its cumulative degradation 
over time by a stochastic process with independent increments. Let 
{Yi(t), t ≥ 0} denote the cumulative degradation process of component i 
with Yi(0) = 0. Let ΔYi(t; s) = Yi(s+t) − Yi(s) denote the degradation 
increment from time s to s+ t, with mean Meani(t), variance Variancei(t)
and mean degradation rate dri = dMeani(t)/dt for i = 1, 2,…,N and s,
t ≥ 0. According to Assumption A1, the failure time of each component 
is characterized by the first hitting time (FHT). FHT Ti for the ith 
degradation process {Yi(t), t ≥ 0}, Yi(0) = 0 to reach its predetermined 
failure threshold Li is defined as 

Ti = inf
t
{Yi(t) ≥ Li}, i = 1, 2,…,N (2-1) 

Wiener process, Gamma process and IG process are considered in this 
study, and their definitions and some properties are given below:  

• Wiener process: Wiener process is often expressed as 

Yi(t) = μit + σiBi(t) (2-2)  

where μi is the drift parameter, σi is the diffusion parameter and Bi(t)
is the standard Brownian motion. The increment is normally 
distributed as ΔYi(t; s) ∼ N (μit, σ2

i t), with Meani(t) = μit, 
Variancei(t) = σ2

i t and dri = μi. It has been proved that Ti obeys an IG 

distribution I G

(
Li
μi
,

L2
i

σ2
i

)

. The probability density function (pdf) and 

cumulative distribution function (cdf) of I G (a, b), b > 0 are 

fI G (y; a, b) =
(

b
2πy3

)1
2

exp
{

−
b(y − a)2

2a2y

}

, y > 0 (2-3)   

FI G (y;a,b)=Φ

( ̅̅̅
b
y

√
(y

a
− 1
)
)

+ exp
(

2b
a

)

Φ

(

−

̅̅̅
b
y

√
(y

a
+1
)
)

,y> 0

(2-4)  

where a, b are the mean and shape parameter and Φ(⋅) is the cdf of 
N (0,1). Thus, the cdf of Ti is 

FTi (t) = FI G

(

t;
Li

μi
,
L2

i

σ2
i

)

, t > 0 (2-5)   

• Gamma process: The increment ΔYi(t; s) follows Gamma distribu-
tion G a(αit, βi), with Meani(t) = αiβ− 1

i t, Variancei(t) = αiβ− 2
i t and 

dri = αiβ− 1
i . The pdf and cdf of G a(a, b), a, b > 0 are given by 

fG a(y; a, b) =
ba

Γ(a)
ya− 1e− by, y > 0 (2-6)  
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FG a(y; a, b) =
γ(a, by)

Γ(a)
, y > 0 (2-7)   

where a is the shape parameter, b is the scale parameter, Γ(a) =

∫∞

0 
xa− 1e− xdx, a > 0 is the Gamma function and γ(a, y) =

∫y

0

xa− 1e− xdx, a >

0, y > 0 is the lower incomplete Gamma function.  

• IG process: The increment follows IG distribution as ΔYi(t; s) ∼
I G (νit,λit2), with Meani(t) = νit, Variancei(t) = ν3

i λ− 1
i t and dri = νi. 

For the monotonic Gamma process and IG process, component i fails 
when Yi(t) ≥ Li. Thus Yi(Ti) = Li, i = 1,2,…,N. Note that ΔYi(t; 0) =
Yi(t) − Yi(0) when Yi(0) = 0, as a result, the cdf of Ti is 

FTi (t)=P(Ti ≤ t)=P(Yi(Ti)≤Yi(t)) =P(Yi(t) ≥Li)=P(ΔYi(t;0)≥Li)

= 1 − FΔYi(t;0)(Li)

(2-8)   

where FΔYi(t;0)(⋅) is the cdf of ΔYi(t; 0) and FΔYi(t;0)(⋅) = FG a(⋅;αit, βi) for 
Gamma process and FΔYi(t;0)(⋅) = FI G (⋅; νit, λit2) for IG process. 

2.3. Dependent degradation processes 

In the realm of system engineering, copula is one of the most prev-
alent approach for representing multiple dependent stochastic pro-
cesses. Generally, a copula function is a multivariate distribution 
function of N standard uniformly distributed random variables [13,26, 
27]. For an N dimensional random vector X = [X1,X2,…,XN] with 
marginal cdfs FX1 (⋅), FX2 (⋅),…, FXN (⋅) and joint cdf FX(⋅), according to 
Sklar’s theorem, there exists a copula function C : [0, 1]N→[0,1] such 
that 

FX(x1, x2,…, xN) = C (FX1 (x1),FX2 (x2),…,FXN (xN)) (2-9)  

and if FXi (⋅), i = 1, 2,…,N are all continuous, then C is unique [26]. The 
joint pdf of X is derived as 

fX(x1, x2,…, xN) =
∂C (FX1 (x1),FX2 (x2),…,FXN (xN))

∂FX1 ∂FX2 ⋯∂FXN

fX1 (x1)fX2 (x2)⋯fXN (xN)

(2-10)  

where fXi (⋅) is the marginal pdf of Xi, i = 1,2,…,N. 
To characterize the dependence among all components using copula 

function, there are two alternatives: (1) to model the dependence among 
the degradation levels (called degradation levels dependence), and (2) 
to model the dependence among the degradation increments (called 
degradation increments dependence). 

For the degradation levels dependence, let Y(t) = [Y1(t),Y2(t),…,

YN(t)] be the random vector representing the degradation levels of all N 
components at time t, then the joint cdf of Y(t) can be expressed with a 
copula function C t(⋅) as 

FY(t)(y1, y2,…, yN) = C t(FY1(t)(y1),FY2(t)(y2),…,FYN (t)(yN)) (2-11)  

where FY(t)(⋅) is the joint cdf of Y(t) and FYi(t)(⋅), i = 1, 2,…,N are the 
marginal cdfs of Y(t). 

In this study, we focus on the degradation increments dependence, as 
it is more flexible than the first alternative and is convenient for simu-
lation. Let ΔY(t; s) = [ΔY1(t; s),ΔY2(t; s),…,ΔYN(t; s)] (recall that 
ΔYi(t; s) = Yi(s + t) − Yi(s), i = 1,2,…,N) be the random vector repre-
senting the degradation increments of N components from time s to time 
s + t for s, t ≥ 0. Then the joint cdf of ΔY(t; s) can be computed by 

FΔY(t;s)(y1, y2,…, yN) = C t
(
FΔY1(t;s)(y1),FΔY2(t;s)(y2),…,FΔYN (t;s)(yN)

)

(2-12)  

where FΔY(t;s)(⋅) is the joint cdf of ΔY(t; s), FΔYi(t;s)(⋅), i = 1,2,…,N are the 
marginal cdfs of ΔY(t; s) and C t(⋅) is the copula function unrelated to 
the beginning time s but related to the time interval t. 

Five copulas with different association characteristics are considered 
in this study: Clayton copula, Frank copula and Gumbel copula are three 
one parameter (denoted as θ) copulas from the Archimedean copulas 
class; normal copula and t copula belong to the elliptical copulas class. 
An Archimedean copula is defined as 

C (u1, u2,…, uN) = φ− 1(φ(u1)+φ(u2)+⋯ + φ(uN))

where the generator φ : [0,1]→[0,∞] is a continuous strictly decreasing 
function and φ− 1(⋅) is its inverse. The generators for Clayton copula, 

Frank copula and Gumbel copula are u− θ − 1, − ln
(

e− θu − 1
e− θ − 1

)

and (− lnu)θ 

respectively. The normal copula is defined as ΦN(Φ− 1(u1), Φ− 1(u2), ⋯,

Φ− 1(uN)), where ΦN(⋅) is the joint cdf of a multivariate normal distri-
bution with mean vector 0 and symmetric correlation matrix R =

[rij]1≤i,j≤N whose diagonal elements equal to 1. Similarly, the t copula is 
defined as FN,v(Fv

− 1(u1),Fv
− 1(u2),⋯,Fv

− 1(uN)), where Fv(⋅) is the cdf of 
the univariate Student’s t distribution with v degrees of freedom and 
FN,v(⋅) is the joint cdf of a multivariate t distribution. For N independent 
components, we can use the independence copula I (⋅), which is defined 
as I (u1,u2,…,uN) = u1u2⋯uN. 

Kendall’s tau (τ), lower tail dependence (λL) and upper tail depen-
dence (λU) are three commonly used measures of association for bivar-
iate copulas [27]. These measures for the five copulas are summarized in 
Table 1, where I{⋅} is the indicator function. Kendall’s tau measures the 
rank correlation, and the larger the value of τ, the stronger the depen-
dence. From Table 1, we can find that τ is a monotone increasing 
function of the parameter (θ or r12) for the five copulas. Tail dependence 
summarizes the dependence in the tails of the bivariate distributions. We 
can find from Table 1 that the five copulas show different tail depen-
dence: Frank copula has no tail dependence, Clayton copula has lower 

Table 1 
Kendall’s tau (τ), lower tail dependence (λL) and upper tail dependence (λU) for Clayton copula, Frank copula, Gumbel copula, normal copula and t copula.   

Parameter τ  λL  λU  

Clayton copula θ ∈ (0,∞) θ
θ + 2  2

−
1
θ  

0 

Frank copula θ ∈ (0,∞)

1+

4
(

1
θ

∫ θ

0

t
et − 1

dt − 1
)

θ  

0 0 

Gumbel copula θ ∈ [1,∞) θ − 1
θ  

0 
2 − 2

−
1
θ  

Normal copula r12 ∈ [ − 1,1] 2
π arcsinr12  

I{r12=1} I{r12=1}

t copula r12 ∈ [− 1,1]
v > 0  

2
π arcsinr12  2Fv

(

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(v + 1)(1 − r12)

1 + r12

√ ) λU = λL   
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tail dependence, Gumbel copula has upper tail dependence, normal 
copula has both lower and upper tail dependence only when r12 = 1, and 
t copula has both lower and upper tail dependence. Therefore, the five 
copulas considered in this study are representative and can characterize 
various dependence scenarios. 

After introducing the dependence structure using copulas, we are 
able to investigate when the multi-component system will fail. The 
failure time T for a K-out-of-N: G system is defined as 

T = inf
t

{
∑N

i=1
I{Ti≤t} ≥ N − K + 1

}

(2-13)  

where Ti, i = 1, 2,…,N is the FHT defined in Eq. (2-1). Let FT(t) denote 
the cdf of T, then we have 

FT(t) = P(T ≤ t) =
∑N

k=N− K+1
P(exactly k components fail at time t)

=
∑N

k=N− K+1

∑

s∈Sk

P({Ti ≤ t,∀i ∈ s} ∩ {Ti > t, ∀i ∕∈ s})
(2-14)  

where Sk, k = N − K + 1,…,N is the set of all possible combinations of 
k-component failure with |Sk| = Ck

N, and s ∈ Sk is a subset of {1,2,…,N}

with |s| = k, which contains the index of the k failed components. For 
example, for a 2-out-of-3: G system, we have S2 = {{1,2},{1,3},{2,3}}, 
S3 = {{1,2,3}}. 

For Gamma and IG degradation processes, due to their monotonicity, 
Ti ≤ t is equivalent to Yi(t) ≥ Li. Thus Eq. (2-14) can be revised as 

FT(t) =
∑N

k=N − K+1

∑

s∈Sk

P({Yi(t) ≥ Li, ∀i ∈ s} ∩ {Yi(t) < Li, ∀i ∕∈ s})

=
∑N

k=N− K+1

∑

s∈Sk

∫ul1(s)

ll1(s)

∫ul2(s)

ll2(s)

⋯
∫ulN (s)

llN (s)

fΔY(t;0)(y1, y2,…, yN)dy1dy2⋯dyN

(2-15)  

where lli(s)= {
Li i ∈ s
0 i ∕∈ s and uli(s)= {

∞ i ∈ s
Li i ∕∈ s are the lower and upper 

limit of integral respectively for i = 1,2,…,N, and fΔY(t;0)(⋅) is the joint 
pdf of ΔY(t; 0), which can be derived analogous to Eq. (2-10). 

For Wiener degradation process, as it is non-monotonic, we can’t 
construct equivalence between Ti ≤ t and Yi(t) ≥ Li. However, we know 
that Ti, i = 1, 2,…,N is IG distributed for Wiener process with cdf FTi (⋅)
given in Eq. (2-5). If the degradation processes of all components are 
independent, or equivalently, C t(⋅) = I (⋅), then FT(t) can be calculated 
by 

FT(t) =
∑N

k=N− K+1

∑

s∈Sk

(
∏

i∈s
FTi (t)

∏

i∕∈s

(1 − FTi (t))

)

(2-16) 

Note that this expression of FT(t) is also applicable to the case of 
independent Gamma or IG degradation processes. If C t(⋅) ∕= I (⋅), FT(t)
can be computed with the aid of simulation. 

2.4. Imperfect maintenance 

Imperfect maintenance is common in practice and the damage 
reduction of imperfect maintenance is often modeled by a random 
variable. For example, Wang et al. [24] used negative jumps in the 
degradation state to quantify the influence of imperfect maintenance, 
Zhao et al. [28] used an improvement factor subject to truncated normal 
distribution in the range [0, 1] to reflect the reduced degradation level, 
and Cheng et al. [29] used a Beta distributed random variable to 
represent the deterioration level after PM. Motivated by them, we use a 
reduction in the degradation level to indicate imperfect maintenance. 

Suppose that we perform PM on component i at time t0, then the 
degradation process after PM is 

Yi(t0 + t) = Yi
(
t−0
)
− PMi,Yi(t−0 )

+ ΔYi(t; t0), t > 0 (2-17)  

where Yi(t−0 ) is the degradation level of component i immediately before 
PM, PMi,Yi(t−0 ) is a random variable representing the reduction in the 
degradation level, and ΔYi(t; t0) is the degradation increment from time 
t0 to t0 + t for i = 1,2,…,N. We further assume that PM1,Y1(t−0 ), PM2,Y2(t−0 ),

…,PMN,YN(t−0 ) are independent with each other, as mentioned in 
Assumption A7. The distribution of PMi,Yi(t−0 ) should be determined 
based on historical data or domain knowledge. In this study, we assume 
that the cdf of PMi,Yi(t−0 ) takes the form of 

FPM
i,Yi(t−0 )

(y)= {

(1 − pi)FB e

(
y

Yi
(
t−0
); ai, bi

)

0 ≤ y < Yi
(
t−0
)

1 y = Yi
(
t−0
)

(2-18)  

where pi ∈ [0,1] is the probability that component i after PM is as-good- 

as-new, and FB e(y; ai, bi) =

∫y

0

1
B (ai, bi)

xai − 1(1 − x)bi − 1dx is the cdf of 

Beta distribution B e(ai, bi), ai > 0, bi > 0, with B (ai, bi) =

∫1

0 

xai − 1(1 − x)bi − 1dx being the Beta function. The above formulation is very 
flexible. We can adjust ai, bi (the two parameters of Beta distribution) 
and pi to represent imperfect maintenance with different characteristics. 
Keeping ai, bi unchanged, 1 − pi can be treated as an indicator of the 
degree of imperfect maintenance. For the case of perfect PM, we can 
simply set pi = 1. 

3. Optimization method 

3.1. The expected long-run discounted cost 

In this study, the time horizon is considered to be infinite. To handle 
the infinite time horizon and take the time value of cost into consider-
ation, the cost incurred at time t is discounted with e− rt, where r is the 
discount factor. Our optimization objective is to minimize the expected 
long-run discounted cost for a brand new multi-component system. 
Based on the aforementioned maintenance settings of the multi- 
component system in Section 2.1, the costs incurred include two parts: 
inspection cost and maintenance cost. 

Inspection cost ci occurs every δ time units. Thus, the expected long- 
run discounted inspection cost is 

Iδ =
∑∞

j=0
cie− rjδ =

ci

1 − e− rδ (3-1) 

The expected long-run discounted maintenance cost is related to the 
initial degradation levels of the N components. Let y1, y2…, yN denote 
the current degradation levels of component 1, 2,…,N upon inspection, 
and y = [y1, y2…, yN] be the corresponding vector. We denote by Vδ(y) =
Vδ(y1, y2,…, yN) the expected long-run discounted maintenance cost 
when the inspection interval is δ and the current degradation levels are 
y. In complex scenarios, the explicit form of Vδ(y) is hard to derive. 
However, due to the Markov property of the system, we use MDP to 
solve for Vδ(y), which will be presented in the next section. 

Our objective is to find the optimal inspection interval δ* and the 
optimal CBM policy to minimize the total expected long-run discounted 
cost for a brand new system, that is, Iδ + Vδ(0,0,…,0). It is worthwhile to 
mention that the model is also applicable to systems with other initial 
conditions. 
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3.2. MDP model for minimizing the expected long-run discounted 
maintenance cost 

In this section, we utilize the MDP framework to find Vδ(y) under a 
given inspection interval δ. The basic elements of the MDP model are 
given below.  

(1) State 

The continuous state y = [y1, y2…, yN] represents the degradation 
levels of N components upon inspection, and the state space S is defined 
as 

S =
{

y ∈ RN |yi ≥ 0, i= 1, 2,…,N
}

(3-2) 

Due to the heterogeneity among components, we normalize yi, i = 1,
2,…,N by the failure threshold Li so that we can compare the failure 
extent of the N components and then find the top n ∈ {1,2,…,N}

components with the worst conditions, which is easier to implement in 
practice. The failure threshold-normalized degradation level ỹi is 
defined as 

ỹi =
yi

Li
, i = 1, 2,…,N (3-3) 

We can see that the larger the value of ỹi, the higher the failure 
extent. Let ỹ(1) ≤ ỹ(2) ≤ … ≤ ỹ(N) denote the order statistics of ỹ1, ỹ2,…,

ỹN and r1, r2,…, rN be the rank of ̃y(1), ỹ(2),…, ỹ(N) in ̃y1,ỹ2,…,ỹN. Then we 
have ỹri

= ỹ(i), i = 1,2,…,N, thus ỹr1
≤ ỹr2

≤ … ≤ ỹrN 
and the top n ∈

{1,2,…,N} components with the worst conditions are component 
rN− n+1, rN− n+2,…, rN. 

For the K-out-of-N: G system, it will fail when less than K components 
are working in normal conditions, or mathematically, when ỹ(K) ≥ 1. 
The set of all system failure states is defined as 

SF =

{

y ∈ S|̃y(K) ≥ 1
}

(3-4)    

(2) Action 

Upon each inspection, if the system is found failed (i.e., y ∈ SF), CM is 
performed. Otherwise, there are totally N + 1 possible actions: to do 
nothing (NULL) or to perform PM on n ∈ {1,2,…,N} components with 
the worst conditions (PMn). Thus, the action space in state y is 

A(y)= {
{CM} y ∈ SF

{NULL, PM1,PM2,…,PMN} y ∕∈ SF (3-5)    

(3) CBM policy 

We adopt a deterministic policy πδ : S→{CM, NULL, PM1, PM2, …,

PMN}. If the state upon inspection is y, action a = πδ(y) is taken. In 
practice, when y ∈ SF, πδ(y) = CM. Our main focus is to solve the 
optimal CBM policy when y ∕∈ SF.  

(4) State transition function 

Let y = [y1, y2…, yN] be the state upon the current inspection, yA =

[yA
1 , yA

2 ,…, yA
N] be the state immediately after taking action a ∈ A(y), and 

y′

= [y′

1, y
′

2,…, y′

N] be the state upon the next inspection. Denote Y = [Y1,

Y2…, YN], YA = [YA
1 ,YA

2 ,…,YA
N] and Y′

= [Y′

1,Y
′

2,…,Y′

N] as the corre-
sponding random vectors of y, yA and y′ , and denote A as the random 
variable of action a. Although the value of A should be real number, for 
the ease of readability, we specify that A = CM,A = NULL,A = PMi, i =
1, 2,…,N represent A = − 1,A = 0,A = i, i = 1,2,…,N in the following 
context. The state transition between two successive inspection epochs 

can be represented by the Bayesian network shown in Fig. 1, where each 
node represents a random vector (variable) and each directed arc in-
dicates probabilistic relationships [30]. As Y′ only depends on YA, there 
is no directed arc from Y,A to Y′ . 

The state transition can be divided to three stages, as illustrated 
below. 

Stage 0: Given the state Y = y upon the current inspection, action 
A = a is chosen based on the deterministic policy a = πδ(y). 
Stage 1: Given the state Y = y and action A = a upon the current 
inspection, the state will transition to YA = yA immediately with 
transition function P1(YA = yA|Y = y,A = a). 
Stage 2: After a period of length δ, the state will transition from YA =

yA to Y′

= y′ upon the next inspection, with transition function 
P2(Y

′

= y′

|YA = yA). 

Denote Po(Y
′

= y′

|Y= y,A= a) as the overall transition function 
from state Y = y with action A = a to state Y′

= y′ . For the sake of 
brevity, we denote P(y′

|y, a) = Po(Y
′

= y′

|Y = y, A = a), 
Pδ(y

′

|yA) = P2(Y
′

= y′

|YA = yA) and PA(yA|y,a) = P1(YA = yA|Y = y,A =

a). The above three transition functions are derived as follows.  

• Derivation of PA(yA|y,a)

For the ease of derivation, the following three cases are considered. 

Case 1: If the system fails upon the current inspection (Y = y ∈ SF), 
CM needs to be performed immediately (A = CM) and the system 
becomes as-good-as-new (YA = 0). The state space of 
YA|Y= y ∈ SF ,A = CM is SAy,CM = {0}. Therefore, this is a deter-
ministic transition and PA(yA|y,CM) specifies a probability mass 
function (pmf) with only one possible value, which can be expressed 
as 

PA
(
yA|y,CM

)
= {

1 yA = 0
0 otherwise (3-6)   

Case 2: If the system is normal upon the current inspection (Y =

y ∕∈ SF) and we decide to do nothing (A = NULL), the state keeps 
unchanged (YA = y). The state space of YA|Y= y ∕∈ SF,A = NULL is 
SAy, NULL = {y}. Therefore, this is also a deterministic transition 
and PA(yA|y,NULL) specifies a pmf with only one possible value, 
which can be expressed as 

PA
(
yA|y,NULL

)
= {

1 yA = y
0 otherwise (3-7)   

Case 3: If the system is normal upon the current inspection (Y =

y ∕∈ SF) and we decide to perform PM on the top n worst components 

Fig. 1. Bayesian network representation of the state transition between two 
successive inspection epochs. 
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(A = PMn,n = 1,2,…,N), components rN− n+1,…, rN are maintained. 
Under the assumption that PM is imperfect (Assumption A7), the 
degradation level of component i immediately after PM is YA

i = yi −

PMi,yi instead of 0 for i = rN− n+1,…, rN (See Section 2.4 for details). 
As we do nothing for components r1, …, rN− n, YA

r1
,…,YA

rN− n 
are 

deterministic with YA
i = yi, i = r1,…,rN− n. Thus, the state YA = [YA

1 ,

YA
2 ,…,YA

N] after PMn is 

YA
i = {

yi i = r1, r2,…, rN− n
yi − PMi,yi i = rN− n+1, rN− n+2,…, rN

(3-8)   

Then the state space of YA|Y= y ∕∈ SF ,A = PMn is 

SAy, PMn =
{

yA∈ S|yA
i = yi, ∀i= r1,…, rN− n and 0 ≤ yA

i

≤ yi,∀i= rN− n+1,…, rN
}

(3-9)  

which is continuous for rN− n+1,…, rN and is deterministic for the 
remaining N − n components. Therefore, the transition function 
PA(yA|y, PMn) specifies a joint pdf of YA

rN− n+1
,…,YA

rN 
and YA

i is determin-
istic with value yi for i = r1,…, rN− n [31]. As we have assumed that PMi,yi 

are independent (Assumption A7), yi − PMi,yi , i = rN− n+1,…, rN are in-
dependent as well. Thus, we have 

PA
(
yA|y, PMn

)
=

⎧
⎨

⎩

∏

i=rN− n+1 ,…,rN

fPMi,yi

(
yi − yA

i

)
yA ∈ SAy,PMn

0 otherwise
(3-10)  

where fPMi,yi
(⋅), i = rN− n+1,…, rN is the pdf of PMi,yi , which can be derived 

from the cdf in Eq. (2-18).  

• Derivation of Pδ(y
′

|yA)

As the state space of Y′ are continuous, the transition function 
Pδ(y

′

|yA) specifies a joint pdf with N dimensions [31]. To compute 
Pδ(y

′

|yA), due to the independent increments, the degradation processes 
from yA to y′ with inspection interval δ can be treated as the degradation 
processes from 0 to Δy = y′

− yA = [y′

1 − yA
1 , y

′

2 − yA
2 ,…, y′

N − yA
N] = [Δy1,

Δy2,…,ΔyN] with adjusted failure thresholds: 

L
′

i = Li − yA
i , i = 1, 2,…,N (3-11) 

Let ΔYi, i = 1, 2,…,N be the random variable representing the 
degradation increment Δyi of component i, and let ΔY = [ΔY1,ΔY2,…,

ΔYN] be the corresponding random vector. Then, the derivation of 
Pδ(y

′

|yA) is similar to the derivation of the distribution of the system 
failure time in Section 2.3. 

For the monotonic Gamma process and IG process, Pδ(y
′

|yA) can be 
computed based on the degradation increments dependence character-
ized in Eq. (2-12) as 

Pδ
(
y′

|yA) =
∂C δ(FΔY1 (Δy1),…,FΔYN (ΔyN))

∂FΔY1 ∂FΔY2 ⋯∂FΔYN

fΔY1 (Δy1)fΔY2 (Δy1)⋯fΔYN (Δy1)

(3-12)  

where FΔYi (⋅), fΔYi (⋅), i = 1, 2,…,N are the marginal cdfs and pdfs of ΔY, 
and Cδ(⋅, ⋅,…, ⋅) is the copula function under interval δ. In particular, 
FΔYi (⋅) = FG a(⋅; αiδ, βi) for Gamma process and FΔYi (⋅) = FI G (⋅; νiδ, λiδ2)

for IG process. For Wiener process, we can’t compute Pδ(y
′

|yA) by Eq. (3- 
12) as it is not monotonic. But with the aid of simulation, Pδ(y

′

|yA) can 
be computed for Wiener process.  

• Derivation of P(y′

|y,a)

As the state space of Y′ are continuous, the overall transition function 
P(y′

|y, a) specifies a joint pdf with N dimensions [31]. The same three 
cases as in the derivation of PA(yA|y, a) are considered. 

Case 1: If Y = y ∈ SF, then A = CM and the state transitions to YA =

0 deterministically, and then transitions to Y′

= y′ upon the next 
inspection. The overall transition is equivalent to the transition from 
YA = 0 to Y′

= y′ in stage 2. Thus, we have P(y′

|y,CM) = Pδ(y
′

|0) for 
y ∈ SF. 
Case 2: If Y = y ∕∈ SF and A = NULL, then the state transitions to 
YA = y deterministically, and then transitions to Y′

= y′ upon the 
next inspection. The overall transition is equivalent to the transition 
from YA = y to Y′

= y′ in stage 2. Thus, we have P(y′

|y,NULL) =
Pδ(y

′

|y) for y ∕∈ SF. 
Case 3: If Y = y ∕∈ SF and A = PMn, then the state transitions to YA =

yA ∈ SAy,PMn with pdf PA(yA|y,PMn), and then transitions to Y′

= y′

upon the next inspection. According the Bayesian network shown in 
Fig. 1, the joint conditional pdf of YA,Y′ given Y = y ∕∈ SF and A =

PMn can be factorized as the product of the two conditional pdfs, that 
is, PA(yA|y, PMn)Pδ(y

′

|yA), which is n+ N-dimensional. By margin-
alizing the n continuous components of YA, that is, YA

rN− n+1
,…,YA

rN
, we 

obtain the overall transition function as P(y′

|y, PMn) =

∫yrN− n+1

0

⋯
∫yrN

0 

PA(yA|y, PMn)Pδ(y
′

|yA)dy′

rN− n+1
⋯dy′

rN 
with yA

i = yi for i = r1,…, rN− n. 

Above all, the transition function from state Y = y with action A = a 
to state Y′

= y′ is   

Thus, it can be verified that 

E[g(Y′

)|Y= y,A= a] = E
[
E
[
g(Y′

)|YA]|Y= y,A= a
]

(3-14)  

where g(Y′

) is a function of the random vector Y′ . 

(5)Reward 

The expected cost of transition from state Y = y ∈ S (the state upon 
the current inspection), taking action A = a ∈ A(y) to YA = yA ∈ S (the 
state immediately after taking action), and finally to Y′

= y′

∈ S (the 
state upon the next inspection) is denoted as C(y,a,yA,y′

), which com-

P(y′

|y, a)= {

Pδ(y
′

|0) y ∈ SF, a = CM
Pδ(y

′

|y) y ∕∈ SF, a = NULL
∫yrN− n+1

0

⋯
∫yrN

0

PA
(
yA|y,PMn

)
Pδ
(
y′

|yA)dyA
rN− n+1

⋯dyA
rN

y ∕∈ SF , a = PMn,

n = 1, 2,…,N

(3-13)   
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prises two parts: (1) maintenance cost when performing CM or PM, and 
(2) expected downtime cost between two inspection epochs. 

For the maintenance cost, when Y = y ∈ SF, the system fails and we 
perform CM (a = CM) with maintenance cost cc and YA = 0. When Y =
y ∕∈ SF and A ∈ {NULL, PM1, PM2, …, PMN}: If we do nothing (A =
NULL), no maintenance cost is incurred and YA = y; If we perform PM 
on n = 1,2,…,N components with the worst conditions (A = PMn), the 
maintenance cost is cs + ncp. 

For the downtime cost, it begins to accumulate with cost cd per time 
unit immediately after the moment when the system breaks down. Let 
Dδ(yA, y′

) denote the expected downtime cost between two successive 

inspection epochs if the state after taking action is YA = yA and the state 
upon the next inspection is Y′

= y′ . Let Dδ(yA) denotes the expected 
downtime cost between two successive inspection epochs if the state 
after taking action is YA = yA. Then the following relationship holds 

between Dδ(yA, y′

) and Dδ(yA): 

Dδ
(
yA) = E

[
Dδ
(
yA, y′)

|YA = yA] (3-15) 

In order to compute Dδ(yA), we need to find the distribution of system 
failure time, which has been discussed in Section 2.3. Let TyA denote the 
system failure time with initial state YA = yA, and let fTyA (t), FTyA (t) be 
the pdf and cdf of TyA , respectively. Due to the independent increments, 
we can regard TyA as the failure time T of a system beginning in state 
0 with adjusted failure thresholds L′

i = Li − yA
i , i = 1, 2, …, N. If the 

system fails at time TyA = t ∈ [0,δ], the discounted downtime cost DC(t)
is 

DC(t) =
∫δ

t

cde− rτdτ =
cd(e− rt − e− rδ)

r
, 0 ≤ t ≤ δ (3-16)  

and thus Dδ(yA) is derived as 

Dδ
(
yA) =

∫δ

0

DC(t)fTyA (t)dt =
∫δ

0

cd(e− rt − e− rδ)

r
fTyA (t)dt (3-17) 

Above all, the expected cost is 

C
(
y, a, yA, y′)

= {

cc + Dδ(0, y′

) y ∈ SF , a = CM
Dδ(y, y′

) y ∕∈ SF , a = NULL
cs + ncp + Dδ

(
yA, y′) y ∕∈ SF , a = PMn, n = 1, 2,…,N

(3-18) 

Under the MDP framework, the state value function is the expected 
long-run discounted maintenance cost Vδ(y) defined in Section 3.1. The 
state-action value function Qδ(y, a), y ∈ S, a ∈ A(y) is defined as 

Qδ(y, a) = E
[
C
(
y, a,YA,Y′)

+ e− rδVδ(Y
′

)|Y = y,A = a
]

= E
[
E
[
C
(
y, a,YA,Y′)

+ e− rδVδ(Y
′

)|YA]|Y = y,A = a
] (3-19)  

where we use the relationship given in Eq. (3-14). Substituting Eq. (3- 
18) into Eq. (3-19) and utilizing the relationship that 
Dδ(yA) = E[Dδ(yA, y′

)|YA = yA] given in Eq. (3-15), we obtain   

Therefore, The Bellman equation of the state value function Vδ(y) is   

3.3. Solving the MDP problem by discretizing the state space 

In order to solve the MDP problem, we discretize the continuous state 
space S and then implement the value iteration algorithm with Monte 
Carlo simulation to find the optimal inspection interval and CBM policy. 
Without loss of generality, we assume that the degradation process of 
component i will terminate once reaching its failure threshold Li, thus 
we have 0 ≤ yi ≤ Li,i = 1,2,…,N. Let Si = {yi|0 ≤yi ≤ Li}, i = 1,2,…,N 
denote the degradation state space for component i. We discretize Si into 
di equidistant intervals, where di is a positive integer. Let Δi = Li/di 
denote the discretization level, then the state space after discretization 
for component i is SΔ

i = {0,Δi,2Δi,…,Li}, i = 1,2,…,N, where the su-
perscript Δ hereafter is used to indicate the notations after discretiza-
tion. Thus, the state space for the system after discretization is 

SΔ =
{

yΔ =
[
yΔ

1 , y
Δ
2 …, yΔ

N

]
|yΔ

i ∈ SΔ
i , i= 1, 2,…,N

}
(3-22)  

and the set of system failure states after discretization is 

SFΔ =

{

yΔ ∈ SΔ |̃yΔ
(K) ≥ 1

}

(3-23) 

After discretizing the state space, we can derive the discretized form 
of the transition functions accordingly. The discretized transition func-
tion from state yΔ ∈ SΔ to state yAΔ ∈ SΔ immediately after taking action 
a ∈ A(yΔ) is computed by 

Qδ(y, a)= {

cc + Dδ(0) + e− rδE
[
Vδ(Y

′

)|YA = 0
]

y ∈ SF, a = CM
Dδ(y) + e− rδE

[
Vδ(Y

′

)|YA = y
]

y ∕∈ SF, a = NULL

cs + ncp + E
[
Dδ
(
YA)+ e− rδE

[
Vδ(Y

′

)|YA]|Y = y,A = a
] y ∕∈ SF , a = PMn,

n = 1, 2,…,N

(3-20)   

Vδ(y) = min
a∈A(y)

Qδ(y, a)= {
Qδ(y,CM) y ∈ SF

min{Qδ(y,NULL),Qδ(y,PM1),…,Qδ(y,PMN)} otherwise (3-21)   
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where FPMi,yΔ
i
(⋅), i = rN− n+1,…, rN is the cdf of PMi,yΔ

i 
given by Eq. (2-18), 

and SAΔyΔ, PMn is the set of all possible discretized states after PMn in 
state yΔ, which is analogous to Eq. (3-9). Eq. (3-24) can be interpreted as 
follows. When yΔ ∈ SFΔ, a = CM or yΔ ∕∈ SFΔ, a = NULL, PΔ

A(yAΔ|yΔ,CM)

and PΔ
A(yAΔ|yΔ,NULL) have the same expressions as Eq. (3-6) and Eq. (3- 

7), respectively. When yΔ ∕∈ SFΔ,a = PMn,n = 1,2,…,N, since PMi,yΔ
i
, i =

rN− n+1,…, rN are assumed to be independent, we can first compute the 
probability that the state of component i after PMn is yAΔ

i , denoted as 

PΔ
A(yAΔ

i |yΔ
i ,PM), and then multiply them together to get PΔ

A(yAΔ|yΔ,PMn). 
Motivated by the idea of continuity correction, we compute PΔ

A(yAΔ
i |yΔ

i ,

PM) by assigning the probability in the small interval 
[
yAΔ

i − Δi
2 , y

AΔ
i +Δi

2

]

to the discretized point yAΔ
i : PΔ

A(yAΔ
i |yΔ

i , PM) = FPMi,yΔ
i

(
yΔ

i − yAΔ
i + Δi

2

)
−

FPMi,yΔ
i

(
yΔ

i − yAΔ
i − Δi

2

)
. 

The discretized transition function from state yAΔ ∈ SΔ to state y
′ Δ ∈

SΔ upon the next inspection, denoted as PΔ
δ (y

′ Δ|yAΔ), is computed by 

Fig. 2. (a) Line charts between the cost and the inspection interval δ. (b) The heat map of the value function under δ* = 1.2. (c) The policy map of the CBM policy 
under δ* = 1.2. 

PΔ
A

(
yAΔ
⃒
⃒yΔ, a

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
yΔ ∈ SFΔ, a = CM, yAΔ = 0 or

yΔ ∕∈ SFΔ, a = NULL, yAΔ = yΔ

∏

i=rN− n+1 ,…,rN

[
FPMi,yΔ

i

(
yΔ

i − yAΔ
i +

Δi

2

)
−

FPMi,yΔ
i

(
yΔ

i − yAΔ
i −

Δi

2

)]

yΔ ∕∈ SFΔ, a = PMn, yAΔ ∈

SAΔyΔ,PMn, n = 1, 2,…,N

1 otherwise

(3-24)   

PΔ
δ

(
y

′ Δ|yAΔ) =

∫
min

{
L1 ,y

′
Δ

1 +
Δ1
2

}

max

{
0,y

′ Δ
1 −

Δ1
2

}

∫
min

{
L2 ,y

′
Δ

2 +
Δ2
2

}

max

{
0,y

′ Δ
2 −

Δ2
2

}
⋯

∫
min

{
LN ,y

′
Δ

N +
ΔN

2

}

max

{
0,y

′ Δ
N −

ΔN
2

}
Pδ
(
y′

|yAΔ)dy′

1dy′

2⋯dy′

N (3-25)   

J. Xu et al.                                                                                                                                                                                                                                       



Reliability Engineering and System Safety 211 (2021) 107592

10

where Pδ(y
′

|yAΔ) is the continuous transition function and like Eq. (3- 

24), we assign the probability in the small interval 
[
y
′ Δ
i − Δi

2 , y
′ Δ
i +Δi

2

]
to 

the discretized point y
′ Δ
i for i = 1,2,…,N. 

The expected downtime cost after discretization is the same as Eq. (3- 
17), and for the consistency of notation, we denote it as DΔ

δ (yAΔ). 
Therefore, the state-action value function after discretization is  

and the Bellman equation becomes 

VΔ
δ (y

Δ)= {
QΔ

δ (y
Δ,CM) yΔ ∈ SFΔ

min
{

QΔ
δ (y

Δ,NULL),QΔ
δ (y

Δ,PM1),…,QΔ
δ (y

Δ,PMN)
}

otherwise
(3-27) 

After discretization, Monte Carlo simulation is used to estimate the 
discretized transition function PΔ

δ (y
′ Δ|yAΔ) and the expected downtime 

cost DΔ
δ (yAΔ). The procedure is summarized in Algorithm 1, where 

DPi(ai, bi) denotes the cumulative degradation process of component i,
i = 1,2,…,N with parameters ai, bi (Wiener process, Gamma process 
and IG process are three candidates), and algorithms for generating 
degradation increments characterized by copula function can be found 
in, for example, Hofert et al. [27]. 

Based on the transition function and expected downtime cost ob-
tained by Algorithm 1, the value iteration algorithm is performed to find 
the optimal value of the state value function VΔ

δ (yΔ) and the corre-
sponding policy πΔ

δ (yΔ) for any given inspection interval δ, which is 

Fig. 3. (a) Line charts between the cost and the inspection interval δ. (b) The optimal cubic policy map viewing at position (1, − 1,1). (c) The optimal cubic policy 
map viewing at position (1, 1,1). 

Fig. 4. Two-dimensional policy maps of yΔ
1 and yΔ

2 when yΔ
3 = 1, 3,5, 7, 9.  

Table 2 
Parameter settings for the three stochastic processes and the skewness (Skewi(t)) 
and excess kurtosis (EKurti(t)) of their degradation increments within time in-
terval t.  

Stochastic process Parameter settings Skewi(t) EKurti(t)

Wiener process μi = 1.25  σi = 0.75  0 0 
Gamma process αi = 25/9  βi = 20/9  1.20t− 1/2  2.16t− 1  

IG process νi = 1.25  λi = 125/36  2.01t− 1/2  5.40t− 1   

QΔ
δ (y

Δ, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cc + DΔ
δ (0) + e− rδ

∑

y
′ Δ∈SΔ

PΔ
δ (y

′ Δ|0)VΔ
δ (y

′ Δ) yΔ ∈ SFΔ, a = CM

DΔ
δ (y

Δ) + e− rδ
∑

y
′ Δ∈SΔ

PΔ
δ (y

′ Δ|yΔ)VΔ
δ (y

′ Δ) yΔ ∕∈ SFΔ, a = NULL

cs + ncp +
∑

yAΔ∈SΔ

PΔ
A

(
yAΔ|yΔ, PMn

)(
DΔ

δ

(
yAΔ)+ yΔ ∕∈ SFΔ, a = PMn,

e− rδ
∑

y
′ Δ∈SΔ

PΔ
δ

(
y
′ Δ|yAΔ)VΔ

δ (y
′ Δ)

)

n = 1, 2,…,N

(3-26)   
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summarized in Algorithm 2. Then, the optimal inspection interval is 
found by 

δ* = argmin
δ

(
Iδ +VΔ

δ (0, 0,…, 0)
)

(3-28)  

with optimal CBM policy πΔ
δ* (yΔ) obtained by Algorithm 2. 

4. Numerical Studies and Analysis 

4.1. Base model 

4.1.1. Base model for a 1-out-of-2: G system 
We first conduct numerical studies for a 1-out-of-2: G system, for 

which the CBM policy can be visualized in a two-dimensional policy 
map. The parameter settings for the base model are as follows: 

• We consider two identical components subject to Gamma degrada-
tion processes with shape parameter α1 = α2 = 25/9 and scale 
parameter β1 = β2 = 20/9, so that the mean and variance of the 

degradation increments within time interval t are Meani(t) =
αiβ− 1

i t = 1.25t (thus the mean degradation rate is dri = 1.25) and 
Variancei(t) = αiβ− 2

i t = (0.75)2t, i = 1,2, respectively, which is the 
same as that of Sun et al. [25]. The failure thresholds are set as L1 =

L2 = 10.  
• Clayton copula with parameter θ = 2 (Kendall’s tau τ = 0.5) is used 

to model the dependence among the degradation increments with 
sample interval h = 0.01 in Algorithm 1. 

Fig. 5. Ten randomly selected degradation paths that evolve from time 0 to time 1.2 for component 1 with degradation subject to (a) Wiener process, (b) Gamma 
process, and (c) IG process. 

Fig. 6. Scatterplot between the optimal inspection interval δ* and the corre-
sponding total cost for the six scenarios of the cumulative degrada-
tion processes. 

Fig. 7. Policy maps of the CBM policy under the optimal inspection interval δ* 

for different scenarios of the degradation processes. Note that for the ease of 
comparison, the 9 policy maps are incomplete, with the degradation levels 
ranging from 6 to 10 instead of from 0 to 10. The undrawn regions all corre-
spond to the action NULL. 
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• The parameters for the distribution of imperfect maintenance in Eq. 
(2-18) are set as p1 = p2 = 0.5 with Beta distribution B e(1,1).  

• Parameters related to cost are as follows: inspection cost ci = 0.1, CM 
cost cc = 15, downtime cost per time unit cd = 2, shared setup cost 
for PM cs = 1, PM cost for one component cp = 1. The discount 
factor is set as r = 0.01. The discretization levels are set as Δ1 = Δ2 =

0.2.  
• For Algorithm 1, the number of Monte Carlo replications is set as B =

10000. 
• For Algorithm 2, the stopping threshold for the value iteration al-

gorithm is set as ϵ = 10− 6. 

We run the value iteration algorithm (Algorithm 2) for δ = 0.1,0.2,… 
, 3.0. To find the optimal inspection interval, we plot the line charts 
between the cost and the inspection interval δ in Fig. 2 (a). As illustrated 
in Fig. 2 (a), the curve for the total cost (blue line) is unimodal and the 
total cost is insensitive to the variation of δ around the optimal inspec-
tion interval δ* = 1.2. When δ increases from 0.1 to 3.0, the total cost 
decreases sharply at first and then increases slowly, which is consistent 
with the findings of Sun et al. [25]. It is worth mentioning that the above 
observation also holds for later numerical studies. 

To investigate the optimal CBM policy, we draw the heat map of the 
optimal value function in Fig. 2 (b) and the optimal CBM policy map in 
Fig. 2 (c). As shown in Fig. 2 (b), the value function VΔ

δ* (yΔ
1 , yΔ

2 ) is sym-
metric and non-decreasing with respect to yΔ

1 ,yΔ
2 . From Fig. 2 (c), we find 

that the region of the same action is symmetric. This is because the 
degradation processes of the two components are identical in the base 
model. In particular, when the degradation level of one component is 

low, doing nothing (NULL, the blue region) is the optimal action. Then, 
as the degradation levels of both components become larger, performing 
PM for the component with the worse condition (PM1, the green region) 
is the optimal action. When the degradation levels of both components 
get even larger, performing PM for both components (PM2, the purple 
region) is necessary to avoid potential system failure risks. In the 
following sections, we denote the lower left border of the non-blue re-
gion (in the upper right corner) in Fig. 2 (c) as the maintenance 
thresholds, which indicates the joint thresholds to perform PM for at 
least one of the two components. 

4.1.2. Base model for a 2-out-of-3: G system 
To illustrate the application of the proposed CBM framework in 

general K-out-of-N: G systems, we investigate the optimal maintenance 
policy of a 2-out-of-3: G system. The parameter settings are the same as 
the base model for a 1-out-of-2: G system, except that (1) the inspection 
cost ci is increased from 0.1 to 0.15 since the number of inspected 
components increases from 2 to 3 upon inspection, and (2) the dis-
cretization levels are set as Δ1 = Δ2 = Δ3 = 0.5 for the ease of compu-
tation. 

The results of the iteration algorithm (Algorithm 2) for the 2-out-of- 
3: G system are shown in Fig. 3. The line charts in Fig. 3 (a) show similar 
tendency as the 1-out-of-2: G system, and the optimal inspection interval 
is δ* = 1.4. Fig. 3 (b) and (c) show the cubic policy map of the optimal 
CBM policy from two different viewpoints, which shows similar trends 
and symmetry as the 1-out-of-2: G system. The optimal CBM policy has a 
general symmetry property: the optimal CBM action for state (yΔ

1 , yΔ
2 , yΔ

3 )

is the same as the state that is a permutation of (yΔ
1 , yΔ

2 , yΔ
3 ). This is 

because the degradation processes of the three components are iden-
tical. For example, the six states marked by black arrows in Fig. 3 (c) 
form a permutation of (10,6.5,0) and their optimal CBM action are all 
PM1 (green region). To better understand the optimal CBM policy for the 
2-out-of-3: G system, we slice the optimal cubic policy map based on the 
degradation state of component 3 (yΔ

3 ). Fig. 4 shows the two- 
dimensional policy maps when yΔ

3 = 1,3,5,7,9. We can find that for a 
fixed value of yΔ

3 , as the degradation levels of component 1 and 
component 2 become larger, more components need to be maintained. 
As the degradation level of component 3 increases, the region of main-
tenance (non-blue region) becomes larger and the maintenance 

Table 3 
Parameter settings for the sensitivity analysis on the mean (Meani(t)) and 
variance (Variancei(t)).   

Meani(t) Variancei(t)
level value αi  βi  value αi  βi  

base 5 /4t  25/9  20/9  3/4t  25/9  20/9  
high 15 /

8t  
25/4  10/3  9/8t  100/81  80/81  

low 5 /8t  25/36  10/9  3/8t  100/9  80/9   

Fig. 8. Scatterplots between the optimal inspection interval δ* and the corresponding total cost for the six scenarios of (a) the mean and (b) the variance of the 
degradation increments. 
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thresholds become lower to avoid potential system failure risks. 
As the CBM policy for the 1-out-of-2: G system can be visualized in a 

two-dimensional policy map, which is convenient for analysis, we use 
the base model for the 1-out-of-2: G system for further investigations. 

4.2. Impacts of the degradation processes 

To further investigate the impacts of the degradation processes on 
the optimal maintenance decisions, we extend the types of the two 
degradation processes (denoted as “DP1-DP2”) in the base model for the 
1-out-of-2: G system from “Gamma-Gamma” to “Wiener-Wiener”, “IG- 
IG”, “Wiener-Gamma” (equivalent to “Gamma-Wiener”, the same 
below), “Wiener-IG” and “Gamma-IG”. To make the results of the above 
six scenarios comparable, the mean and variance are set to be the same 
for Wiener process, Gamma process and IG process as Meani(t) = 1.25t 
and Variancei(t) = (0.75)2t, i = 1, 2. Table 2 summarizes the related 
parameter settings for the three stochastic processes as well as the cor-
responding skewness, denoted as Skewi(t), and excess kurtosis, denoted 
as EKurti(t), of the degradation increments within time interval t. Other 
parameters are the same as the base model. 

For each of the three stochastic processes, we randomly select ten 
degradation paths that evolve from time 0 to time 1.2 and plot them in 
Fig. 5. We can see that the degradation path of Wiener process is non- 
monotonic and fluctuates frequently, while those of Gamma process 
and IG process are monotonic with positive jumps. 

To better understand the degradation dependence structure of the six 
scenarios, we make a detailed analysis by comparing the scatterplots of 
the degradation increments from time 0 to 0.01 and the scatterplots of 
the degradation levels at time 1.2 in Supplementary File A. We find that 
the scenario “Wiener-Wiener” is relatively easier to preserve the 
dependence through the deterioration cumulative process while others 
not. This may be explained as follows. On the one hand, we know from 
Table 2 that the skewness and excess kurtosis of the degradation 

increments within time interval t = 0.01 are both 0 for Wiener process, 
but they are Skewi(0.01) = 12, Ekurti(0.01) = 216 for Gamma process 
and Skewi(0.01) = 20, Ekurti(0.01) = 540, i = 1,2 for IG process. Thus, 
the distributions of the degradation increments for Gamma process and 
IG process are positively skewed with heavy right tails. On the other 
hand, although Clayton copula has lower tail dependence, the depen-
dence in the upper tail is weak. As a result, for scenarios other than 
“Wiener-Wiener”, the relatively larger degradation increments that 
distribute in the heavy right tails have little dependence and gradually 
weaken the lower tail dependence through the deterioration cumulative 
process. 

We run the value iteration algorithm (Algorithm 2) for δ = 0.1,0.2,
…,3.0 for each of the six scenarios. Fig. 6 shows the scatterplot between 
the optimal inspection interval δ* and the corresponding total cost. We 
can find that δ* is insensitive to the types of the cumulative degradation 
processes, as δ* = 1.2 for all scenarios except for “Gamma-IG”. This is 
probably because the mean degradation rates of all scenarios are the 
same. 

For the total cost under δ*, if the two degradation processes are 
identical (i.e., DP1 = DP2), the total cost increases in the order of 
“Wiener-Wiener”, “Gamma-Gamma” and “IG-IG”. As shown in Table 2, 
the distribution of the degradation increments for Gamma process and 
IG process are positively skewed with heavy right tails, and the skewness 
and excess kurtosis for IG process are larger than Gamma process. Thus, 
for any initial degradation states, the component (and further the sys-
tem) subject to IG degradation process is more likely to fail upon in-
spection than Gamma process and results in a higher maintenance cost. 
The comparison between “Wiener-Wiener” and “Gamma-Gamma” are 
similar. If the two degradation processes are heterogeneous (i.e., 
DP1 ∕= DP2), it shows that the total cost for “DP1-DP2” is smaller than the 
maximum of that of “DP1-DP1” and “DP2-DP2”, but not necessarily 
bigger than their minimum. For example, the total cost for “Wiener-IG” 
is smaller than both “Wiener-Wiener” and “Gamma-Gamma”, as shown 

Fig. 9. Policy maps of the CBM policy under the optimal inspection interval δ* for different scenarios of (a) the mean and (b) variance of the degradation increments. 
For the ease of comparison, the above 18 policy maps are incomplete, with the degradation levels ranging from 3 to 10 instead of from 0 to 10. The undrawn regions 
all correspond to the action NULL. 
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in Fig. 6. 
Fig. 7 shows the optimal CBM policy maps for all scenarios in a 3-by- 

3 grid. If the degradation processes of the two components are identical 
(“Wiener-Wiener”, “Gamma-Gamma”, “IG-IG”), we can find that the 
maintenance thresholds for “Wiener-Wiener” are less dependent 
(square-like thresholds). This is because there exists strong dependence 
between the two components for the scenario “Wiener-Wiener” through 
the deterioration cumulative process, as shown in Supplementary File A. 
Hence, the deterioration of one component has a significant influence on 
the other component. It is profitable to immediately maintain the 
component when the acceleration of one deterioration is detected. In 
the context of 1-out-of-2: G system, if the degradation processes of 
the two components are heterogeneous (“Wiener-Gamma”, 
“Wiener-IG” and “Gamma-IG”), we speculate it is more critical to 
maintain the component subject to Wiener degradation process. 
This can be seen from the scenarios of “Wiener-IG” and “Wiener- 
Gamma” (the first and second policy maps in the first column of Fig. 7), 
where the region of maintaining the Wiener degraded component (the 
green region in the lower triangular plus the purple region) is larger than 
the other, which indicates that the Wiener degraded component is more 
critical. This is because for any initial degradation states, the component 
subject to Wiener degradation process is less likely to fail upon inspec-
tion than the heavy-tailed Gamma process and IG process. It is cost- 
effective to perform PM on the Wiener degraded component with rela-
tively lower thresholds when its degradation level is higher than the 
other component. 

Note that the mean (Meani(t)) and variance (Variancei(t)) of the 
degradation increments can represent the mean degradation rate and 
degradation uncertainty, respectively, which can determine the degra-
dation process to some extent. We further perform sensitivity analysis on 
Meani(t) and Variancei(t) separately for the base model to examine their 
impacts on the optimal maintenance decisions. Table 3 summarizes the 
values for the base, high and low level of Meani(t) and Variancei(t), 
together with the resulting parameters (αi and βi) of the Gamma process. 
Apart from the case that the two degradation processes are identical, we 
also consider the heterogeneous cases. Therefore, for the mean (vari-
ance) of the two components (denote “lvl1-lvl2” as the parameter levels 
of the two components respectively), 6 scenarios are considered, 
including “low-low”, “base-base”, “high-high”, “low-base” (equivalent 
to “base-low”, the same below), “low-high” and “base-high”. 

Fig. 8 (a) shows the scatterplots between the optimal inspection in-
terval δ* and the total cost for different scenarios of the mean. We can 
find that the total cost increases in the order of “low-low”, “low-base”, 

“low-high”, “base-base”, “base-high” and “high-high”, while the optimal 
inspection interval δ* decreases in the same order. Generally, if a system 
degrades faster (note that a component with larger Meani(t) degrades 
faster), more frequent inspection is required to prevent potential system 
failure risks. Meanwhile, the underlying total cost often gets larger due 
to the larger inspection cost and increasing system failures. Therefore, 
the above results can be interpreted as follows:  

(1) For scenarios “lvl1-lvl1” and “lvl2-lvl2”, if lvl1 is larger than lvl2, 
the system with “lvl1-lvl1” will degrade faster than the other, and 
thus we can speculate that the total cost (the optimal inspection 
interval δ*) for “lvl1-lvl1” is larger (smaller) than that of 
“lvl2-lvl2”.  

(2) For scenarios “lvl1-lvl2” and “lvl1-lvl3” (equivalent to “lvl3-lvl1”), 
if lvl2 is larger than lvl3, the system with “lvl1-lvl2” will degrade 
faster than the other, and thus we can speculate that the total cost 
(the optimal inspection interval δ*) for “lvl1-lvl2” is larger 
(smaller) than that of “lvl1-lvl3”. 

The results for different scenarios of the variance are shown in Fig. 8 
(b). We find out that the total cost follows the same trend as the mean, 
which can be adjusted similarly. However, the optimal inspection in-
terval is insensitive to the variance. This is possibly because the mean 
degradation rates for different scenarios are the same. 

The optimal CBM policy maps for different scenarios of the mean and 
variance are shown in Fig. 9. If the two degradation processes are 
identical (“low-low”, “base-base”, “high-high”), with the increase of the 
mean, one should increase the inspection frequency, while with the in-
crease of the variance, one should tend to use group maintenance (to 
maintain the two components together). Generally, we can interpret the 
results from the following two perspectives:  

(1) In terms of the system degradation, if the system has a higher 
probability to fail for any given initial states, the CBM policy can 
be more active to prevent potential system failure. In this case, 
the maintenance thresholds can be lower and group maintenance 
is preferable (PM2).  

(2) In terms of the optimal inspection interval δ*, if δ* is relatively 
smaller, the CBM policy can be more conservative as we inspect 
the system more frequently. Therefore, the maintenance thresh-
olds can be higher and maintaining each component individually 
is preferable (PM1). 

Fig. 10. (a) Line charts of the optimal inspection interval δ* with respect to Kendall’s tau for the five copulas. (b) Line charts of the total cost under δ* with respect to 
Kendall’s tau for the five copulas. Note that the red point represents the case of independence copula and is plotted on the figure for reference. 
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As a system with a higher probability to fail usually requires a 
smaller δ*, the above two perspectives are not independent, but usually 
one dominates. Perspective (2) can be used to explain the results for the 
mean, where δ* decreases sharply when the mean changes from low to 
base to high. Perspective (1) is suitable to explain the results for the 
variance, where δ* is almost unchanged under different scenarios and 
the system gets more likely to fail with the increase of the variance. 

Note that, in the context of 1-out-of-2: G system, if the two degra-
dation processes are heterogeneous (“low-base”, “low-high”, “base- 
high”), it is more critical to maintain the component with relatively 

small mean degradation rate (smaller mean) and uncertainty (smaller 
variance). Taking the scenario “low-high” in Fig. 9 (a) for example, the 
mean of component 1 is smaller than component 2. We can find from 
Fig. 9 (a) that the region of maintaining component 1 (the green region 
in the lower triangular plus the purple region) is larger than the other, 
indicating that component 1 is more critical. One possible explanation is 
that for any initial degradation states, the component with smaller mean 
(variance) is less likely to fail upon inspection and it is more cost- 
effective to maintain such component when its degradation level is 
higher than the other component. 

Fig. 11. Policy maps of the CBM policy under the optimal inspection interval δ* for different copula-Kendall’s tau combinations. Each row corresponds to one type of 
copula and each column corresponds to one level of Kendall’s tau. Note that for the ease of comparison, the above 25 policy maps are incomplete, with the 
degradation levels ranging from 6 to 10 instead of from 0 to 10. The undrawn regions all correspond to the action NULL. 
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4.3. Impacts of the copula functions 

To further investigate the impacts of copula functions on the optimal 
maintenance decisions, we extend the copula function in the base model 
from Clayton copula to Frank copula, Gumbel copula, normal copula 
and t copula (with v = 2 degrees of freedom). For each copula, 5 levels of 
Kendall’s tau (τ) including 0.1, 0.3, 0.5, 0.7, 0.9 are considered to 
indicate different degrees of association between the two degradation 
processes. Thus, there are totally 25 scenarios and the other parameters 
are the same as the base model. 

To better understand the degradation dependence structure of the 25 
scenarios, we make a detailed analysis by comparing the scatterplots of 
the degradation increments from time 0 to 0.01 and the scatterplots of 
the degradation levels at time 1.2 in Supplementary File B. We find that 
for each of the five copulas, as Kendall’s tau increases, the positive as-
sociation between the degradation increments of the two components 
becomes stronger. Meanwhile, the dependence between the two com-
ponents is easier to preserve through the deterioration cumulative 
process for Gumbel copula, normal copula and t copula, but is hard to 
preserve for Clayton copula and Frank copula. This is possibly because 
that Gumbel copula, normal copula and t copula are three copulas with 
upper tail dependence. Besides, for copulas without upper tail 

dependence, such as Clayton copula and Frank copula, the dependence 
may be easier to preserve if the two degradation processes are both 
Wiener process, as what we have discussed in Section 4.2. 

Again, we run the value iteration algorithm for δ = 0.1, 0.2,…,3.0 
for each of the 25 scenarios, and we also consider the scenario with two 
independent cumulative degradation processes by using the indepen-
dence copula. We draw the line charts of the optimal inspection interval 
δ* with respect to Kendall’s tau for the five copulas in Fig. 10 (a). We can 
see that δ* fluctuates between 0.9 and 1.2. Combined with the results in 
Section 4.1 that δ is robust around the optimal value, we may conclude 
that δ* is insensitive to both the types of copula and Kendall’s tau. Fig. 10 
(b) shows the line charts of the total cost under δ*, from which we can 
observe that for all 5 copulas, the total cost tends to be larger when 
Kendall’s tau increases. On average, the total cost increases in the order 
of Clayton copula, Frank copula, normal copula, t copula and Gumbel 
copula. Note that the first three copulas are with upper tail dependence 
and is easier to preserve the dependence through the deterioration cu-
mulative process while the last two copulas not, as discussed at the 
beginning of this section. We may speculate that the total cost will be 
larger if the dependence among the two components is easier to pre-
serve, under which condition there exists strong positive association 
between the degradation levels of the two components. Thus, the system 
fails more frequently and the maintenance cost will be larger. 

Fig. 11 shows the optimal CBM policy maps for all 25 scenarios, 
arranged in a 5-by-5 grid. Remarkably, it seems that the component- 
specific maintenance thresholds dependence is inversely related to 
the degradation dependence of the two components. For each 
copula, the more dependence between the two components (the larger 
the Kendall’s tau), the less dependence in the thresholds for PM1 (square 
like thresholds). One possible explanation is that with larger Kendall’s 

Fig. 12. (a) Line chart of the optimal inspection interval δ* with respect to p. (b) Line chart of the total cost under δ* with respect to p.  

Fig. 13. Policy maps of the CBM policy under the optimal inspection interval δ* for different levels of p. Each column corresponds to one level of p. For the ease of 
comparison, the above 5 policy maps are incomplete with the degradation levels ranging from 6 to 10 instead of from 0 to 10. The undrawn regions all belong to the 
action NULL. 

Table 4 
Parameter settings for sensitivity analysis on the five cost-related parameters.   

ci  cc  cd  cs  cp  

base 0.1 15 2 1 1 
high 0.15 22.5 3 1.5 1.5 
low 0.05 7.5 1 0.5 0.5  
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tau, the deterioration of one component has a significant influence on 
the other. Therefore, it is profitable to immediately maintain the 
component when the acceleration of one deterioration is detected. 
Hence, the maintenance thresholds for PM1 are relatively less depen-
dent. In extreme situation, the maintenance thresholds for PM1 are like a 
square, such as the scenarios “Gumbel-0.9” and “t-0.9” in Fig. 11, where 
PM is performed on the worse component when the degradation levels 
of both components exceed the thresholds. One observed trend is that 
the component-specific maintenance thresholds are less dependent 
for components with upper tail degradation dependence. For a 
specific Kendall’s tau, the thresholds for PM1 is less dependent for 
copulas with upper tail dependence (e.g., Gumbel copula, normal copula 
and t copula) than copulas without upper tail dependence (e.g., Clayton 
copula, Frank copula). We have analyzed previously that for copulas 
with upper tail dependence, the dependence between the two compo-
nents is easier to preserve through the deterioration cumulative process. 
Thus, the deterioration of one component has a more significant influ-
ence on the other for copulas with upper tail dependence than without. 
As a result, it is more profitable to immediately maintain the component 
when the acceleration of one deterioration is detected and the thresholds 
for PM1 is less dependent. 

4.4. Impacts of the imperfect maintenance 

Recall that in Section 2.4 we assume that there is a reduction PMi,y−i 
in the degradation level after performing PM on component i for i = 1,2, 
and the cdf of PMi,y−i is 

FPMi,y−i
(y)= {

(1 − pi)FB e

(
y

y−i
; ai, bi

)

0 ≤ y < y−i

1 y = y−i

(4-1)  

where y−i is the degradation level of component i immediately before 
PM, pi ∈ [0,1] is the probability that the component after PM is as-good- 
as-new, and 1 − pi can reflect the degree of imperfect maintenance. 

To further explore the impacts of imperfect maintenance on the 
optimal maintenance decisions, we focus on the effects of pi, i = 1,2 and 
explore the case when p1 = p2 = p. Five levels of p are considered, 
including 0, 0.25, 0.5, 0.75, 1, where p = 1 corresponds to perfect 
maintenance. The other parameters are the same as the base model. 

We run the value iteration algorithm for δ = 0.1, 0.2,…,3.0 for each 
level of p. The line charts for the optimal inspection interval δ* and the 
total cost under δ* are shown in Fig. 12. It shows that with the increase of 
the degree of imperfect maintenance (the decrease of p), there is a 
decreasing trend for the optimal inspection interval δ* and there is an 
increasing trend for the total cost. One explanation is that due to the 
imperfect maintenance, the maintenance action is less effective than 
before. Therefore, the inspection interval is reduced to prevent system 
failure risks and both the inspection cost and maintenance cost will be 
higher. 

The optimal CBM policy maps are shown in Fig. 13. We speculate 
that if the maintenance is effective, the system is prone to individual 
maintenance; if the maintenance is less effective, the group maintenance 
is preferable. We can interpret this remark as follows. When p decreases 

Algorithm 1 
Algorithm for estimating PΔ

δ (y
′ Δ|yAΔ) and DΔ

δ (yAΔ)

Input: Cumulative degradation processes: DPi(ai,bi). Failure threshold: Li. Sample 
interval of the degradation path: h. Copula function: C h. Inspection interval: δ. 
Downtime cost: cd. Discount factor: r. Discretization level: Δi. Initial degradation 
state: yAΔ = [yAΔ

1 ,yAΔ
2 ,…,yAΔ

N ]. Number of replications: B.  

Output: Estimated PΔ
δ (y

′ Δ|yAΔ) for all y
′ Δ ∈ SΔ and DΔ

δ (yAΔ).  
begin 

Initialization: Set PΔ
δ (y

′ Δ |yAΔ) = 0 for all y
′ Δ ∈ SΔ, and DΔ

δ (yAΔ) = 0;  
for b = 1,2,…,B  

Set yb
i,0 = yAΔ

i , i = 1,2,…,N; // Initialize the initial states for the degradation 
paths  

for t = 1,h,…,
⌊δ
h

⌋
h  

Generate degradation increments Δyb
i,t , i = 1, 2,…,N with cumulative 

degradation processes DPi(ai, bi) and copula function Ch; // See Hofert et al. [27] 
for related algorithms  

Set yb
i,t = yb

i,t− 1 + Δyb
i,t , i = 1,2,…,N;  

end for 
for i = 1,2,…,N  

Set y
′ b
i = yb

i,
⌊δ
h

⌋
h

; // Compute the state upon the next inspection, denoted as y
′ b
i  

Compute the failure time of component i, denoted as tbi (set as Inf if not fails 
over [0,δ]);  

if tbi < Inf then  

Set y
′ b
i = Li; // The state upon the next inspection is Li if component i fails over 

[0, δ]
end if 

end for 
Compute the failure time of the system, denoted as tb (set as Inf if not fails over [0,
δ]);  

if tb < Inf then  

Set DΔ
δ (yAΔ) = DΔ

δ (yAΔ)+
cd(e− rtb − e− rδ)

r
;  

end if 

Set y
′ Δb
i = max

{⌊
y
′ b
i

Δi
+

1
2

⌋

,0
}

, i = 1,2,…,N; // Compute the discretized 

transitioned states  

Set PΔ
δ (y

′ Δb|yAΔ) = PΔ
δ (y

′ Δb|yAΔ)+ 1; // y
′ Δb = [y

′ Δb
1 ,y

′ Δb
2 ,…,y

′ Δb
N ]

end for 
Set DΔ

δ (yAΔ) = DΔ
δ (yAΔ)/B; // Compute the expectation by dividing the number of 

replications  

Set PΔ
δ (y

′ Δ|yAΔ) = PΔ
δ (y

′ Δ |yAΔ)/B for all y
′ Δ ∈ SΔ; // Transform frequency into 

probability  
end  

Algorithm 2 
Value iteration algorithm for estimating VΔ

δ (yΔ) and πΔ
δ (yΔ)

Input: Cumulative degradation processes: DPi(ai,bi). Failure threshold: Li. Sample 
interval of the degradation path: h. Copula function: C h. Imperfect maintenance: pi, 
B e(ai,bi). Inspection interval: δ. Cost parameters: ci,cc,cd,cs,cp. Discount factor: r. 
Discretization level: Δi. Number of replications: B. Stopping threshold: ϵ.  

Output: Estimated state value function VΔ
δ (yΔ) and corresponding policy πΔ(yΔ) for all 

yΔ ∈ SΔ.  
begin 

Initialization: Set VΔ
δ (yΔ) = 0,VΔ(1)

δ (yΔ) = ϵ, πΔ
δ (yΔ) = − 1 for all yΔ ∈ SΔ;  

Compute PΔ
A (yAΔ |yΔ , a) for all yΔ, yAΔ ∈ SΔ , a ∈ A(yΔ) by Eq. (3-24);  

Compute PΔ
δ (y

′ Δ |yAΔ) and DΔ
δ (yAΔ) for all y

′ Δ, yAΔ ∈ SΔ using Algorithm 1;  

while max
yΔ∈SΔ

⃒
⃒VΔ(1)

δ (yΔ) − VΔ
δ (yΔ)

⃒
⃒ ≥ ϵ do  

Set VΔ
δ (yΔ)←VΔ(1)

δ (yΔ);  

for yΔ ∈ SΔ  

if yΔ ∈ SFΔ then // SFΔ⊂SΔ is the set of system failure states  

Set VΔ(1)
δ (yΔ)←cc + DΔ

δ (0)+ e− rδ ∑

y
′ Δ∈SΔ

PΔ
δ (y

′ Δ|0)VΔ
δ (y

′ Δ);  

Set πΔ
δ (yΔ)←CM;  

else 
Compute: 

Qδ(yΔ ,NULL) = DΔ
δ (yΔ)+ e− rδ ∑

y
′ Δ∈SΔ

PΔ
δ (y

′ Δ|yΔ)VΔ
δ (y

′ Δ);

Qδ(yΔ, PMn) = cs + ncp +
∑

yAΔ∈SΔ

PΔ
A (y

AΔ |yΔ,PMn)(DΔ
δ (y

AΔ) +
∑

e− rδ
∑

y
′ Δ∈SΔ

PΔ
δ (y

′ Δ |yAΔ)VΔ
δ (y

′ Δ)), n = 1, 2,…,N;

Set VΔ(1)
δ (yΔ)←min

a
QΔ

δ (yΔ ,a); 

Set πΔ
δ (yΔ)←argmin

a
QΔ

δ (yΔ ,a); // Choose the optimal action  
end if 

end for 
end while 

end  
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from 1 to 0 (from the right to the left in Fig. 13), the effectiveness of the 
maintenance gets lower. With less effective maintenance, the compo-
nent after PM tends to have a worse condition. Therefore, we need to 
perform PM on the two components together more to compensate for the 
effect of imperfect maintenance. Besides, when the maintenance is less 
effective, we tend to inspect the system more frequently. Thus, it is 
sufficient to perform the maintenance action when the degradation 
levels of the two components are high enough. 

4.5. Sensitivity analysis for a 1-out-of-2: G system 

Sensitivity analysis on the remaining five cost-related parameters are 
conducted in this section to investigate their impacts on the optimal 
maintenance decisions, which is similar to that in Sun et al. [25] and we 
also get some comparable results. Table 4 summarizes the parameter 
settings for the base (parameter settings in the base model), high (50% 
higher than the base model) and low (50% lower than the base model) 

Fig. 14. Scatterplots for (a) the optimal inspection interval δ* and (b) the total cost with respect to the five cost parameters. The horizontal red dashed line cor-
responds to the result of the base model. 

Fig. 15. Policy maps of the CBM policy under the optimal inspection interval δ* for the sensitivity analysis on the five cost parameters. Each row corresponds to one 
level of parameter setting and each column corresponds to one cost parameter. Note that for the ease of comparison, the above 15 policy maps are incomplete, with 
the degradation levels ranging from 6 to 10 instead of from 0 to 10. The undrawn regions all correspond to the action NULL. 
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levels of the five cost parameters, and the other parameters are un-
changed compared with the base model. 

We run the value iteration algorithm for δ = 0.1,0.2,…,3.0 for each 
scenario. Fig. 14 shows the scatterplots for the optimal inspection in-
terval δ* and the corresponding total cost with respect to the five cost 
parameters, where the horizontal red dashed line corresponds to the 
result of the base model. The optimal policy maps are shown in Fig. 15. 
From Fig. 14 (a), we can find that δ* is highly sensitive to ci and cp, 
slightly sensitive to cc and cs, but not sensitive to cd. It shows from Fig. 14 
(b) that the total cost under δ* is highly sensitive to cs and cp, slightly 
sensitive to ci and cc, but not sensitive to cd as well. And all the total cost 
in the high (low) level of the five cost parameters are larger (smaller) 
than the base level. 

Specifically, when the inspection cost ci increases, the periodic in-
spection should be less frequent due to the cost consideration. Mean-
while, according to the policy maps in the first column of Fig. 15, the 
maintenance thresholds get lower and maintaining the two components 
together is preferable. For the shared setup cost cs, it exhibits charac-
teristics similar to those of ci. In contrast to ci, when the CM cost cc or the 
PM cost cp increases, more frequent inspection is required to lessen the 
cost caused by system failure. However, cc and cp show opposite trends 
in the policy maps shown in Fig. 15. In particular, cc behaves like ci, 
while when cp increases, the maintenance thresholds get higher and 
maintaining each component individually is preferable. Finally, the 
down time cost cd is insensitive to both the optimal inspection interval δ* 

and the total cost, which is also confirmed by the results that the three 
policy maps under different levels of cd are very similar to each other, as 
shown in the third column of Fig. 15. 

5. Conclusions 

With the development of sensor and communication technology, 
CBM plays an important role in system maintenance, especially for 
multi-component systems. In this study, we investigate the generalized 
CBM optimization problem for multi-component systems by empha-
sizing the stochastic dependency among components and considering 
imperfect maintenance. The system under study is a K-out-of-N: G sys-
tem with N dependent components under periodic inspection. Our 
objective is to minimize the expected long-run discounted cost. In the 
model, the cumulative degradation of an individual component is 
modeled by heterogeneous stochastic processes. Copula function is used 
to characterize the degradation dependence, and the imperfect main-
tenance is represented by a reduction in the degradation level. Due to 
the Markov property of the proposed CBM model, MDP is used to solve 
the problem, and the state, action, policy, state transition function and 
reward of the MDP model are well defined. To ease the computation 
burden, we discretize the continuous state space and then use the value 
iteration algorithm with Monte Carlo simulation to find the optimal 
inspection interval and the corresponding CBM policy. 

After investigating the 1-out-of-2: G system, we conclude four re-
marks that might be beneficial for guiding the maintenance in practice. 

• Impacts of the types of degradation processes: Based on the nu-
merical testing, it seems that it is more critical to preserve the 
component subject to Wiener degradation process if the two degra-
dation processes are “Wiener-Gamma” or “Wiener-IG” with the same 
mean degradation rates.  

• Impacts of the mean degradation rate and uncertainty: It seems 
that for a system with two Gamma degradation processes, if the two 
degradation processes are identical, with the increase of the mean 
degradation rate, one should increase the inspection frequency, 
while with the increase of the degradation uncertainty, one should 
tend to use group maintenance (to maintain the two components 
together); If the two degradation processes are heterogeneous, it is 

more critical to preserve the component with relatively low mean 
degradation rate and uncertainty.  

• Impacts of the copula functions: We speculate that for a system 
with two identical Gamma degradation processes, the component- 
specific maintenance thresholds dependence is inversely related to 
the degradation dependence of the two components, and the 
component-specific maintenance thresholds are less dependent for 
components with upper tail degradation dependence.  

• Impacts of the imperfect maintenance: We speculate that for a 
system with two identical Gamma degradation processes, if the 
maintenance is effective, the system is prone to individual mainte-
nance; If the maintenance is less effective, the group maintenance is 
preferable. 

For future research, the above conclusive remarks obtained from a 1- 
out-of-2: G system can be generalized to the K-out-of-N: G system with 
N ≥ 3, for which the maintenance decisions will be more diverse. 
Although some results are intuitively convincing and verifiable by nu-
merical testings, further studies such as rigorous derivations are still 
recommended. Moreover, when ranking the failure extent of N compo-
nents, although the failure threshold-normalized degradation level is 
easier to implement in practice, using the expected remaining useful life 
is another reasonable alternative, which deserves further investigation. 
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