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Run-to-Run (R2R) control has been widely used in semiconductor manufacturing to compensate for process disturbance and to
improve quality. The traditional R2R controller only takes the process output in a previous run as its input and generates an optimal
recipe for the next run. In a multistage semiconductor manufacturing process, variations in upstream stations are propagated to
downstream stations. However, the information from upstream stations is not considered by existing controllers. In addition, most
R2R processes have a limited capacity; the products must be processed in batches. Therefore, if the incoming materials could be
grouped with small within-batch variations and large batch-to-batch variations and the recipes are customized for each batch to drive
all batch averages toward the same target value, the output variation could be reduced and quality improved. A batch Exponentially
Weighted Moving Average (EWMA) controller is proposed in this article. It employs a modified K-means algorithm to group the
incoming materials into batches with a fixed and equal size while minimizing the within-batch variation. The controller then generates
the control settings by taking both the batch information and the feedback quality information into account. Simulation studies show
that the proposed controller could significantly reduce output variation and improve quality.

Keywords: Batch-to-batch variation, K-means clustering algorithm, run-to-run process control, semiconductor manufacturing, within-
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1. Introduction

In semiconductor manufacturing processes, products are
typically processed in the form of separated runs (batches).
A run is defined as a series of operations on one work-
piece or a batch of workpieces within an inseparable time
interval. During processing, the products in the same batch
undergo identical treatments and the treatments applied
to products in different batches can be adjusted to com-
pensate for process variations such as tool wear-out and
dimensional changes. To reduce failures caused by poten-
tial process drifts or shifts between different batches, re-
search on Run-to-Run (R2R) process control has attracted
extensive attention in recent years (see, for example, Sachs
et al. (1991), Sachs et al. (1995), Del Castillo and Hurwitz
(1997), and Tseng et al. (2003)). Such control algorithms,
typically called R2R controllers, update process model pa-
rameters in a recursive way when output from the previous
run becomes available and help generate recipes for future
runs.

A typical semiconductor manufacturing process has the
following two features: first, multiple stages are required
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to produce a single product; second, the handling capacity
of each stage is limited, thus forming production batches.
In this research, we use a wafer preparation process as an
example for illustration. More than 10 stages are needed to
produce a wafer from a crystal silicon ingot. The inputs to
five major stages (slicing, lapping, etching, Chemical Vapor
Deposition (CVD), and polishing) are shown in Table 1. In
the slicing stage, one, two, or four ingots can be sliced at
the same time using wire saws; hundreds or thousands of
wafers can be produced in one run. Sliced wafers are then
arranged into smaller batches and mounted on a lapping
plate to remove slicing cracks. The wafer quality is thereby
improved. For example, thickness uniformity is improved
after the lapping stage. After that, the wafers are put into
holding baskets and etched. Then, wafers are removed from
the baskets, reassembled, and placed into a quartz boat
for CVD. Finally, the wafers are polished after being sepa-
rated into batches according to the capacity of the polishing
machine.

It is clear from the above illustration that production batch
is a basic and important feature in wafer production. The
batch size varies from stage to stage due to changes in the
machine capacity. In a process we studied in a local factory,
the slicing process generates batches of 300 to 400 wafers
via simultaneous wire-saw cutting. Each lapping batch can
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Table 1. Inputs for five major processing stages in wafer
preparation

Input Processing
(schematic illustration) Input stage

Silicon ingot Slicing

Lapping plate with
rings and slots;
fixed capacity

Lapping

Holding basket
with fixed
capacity

Etching

Quartz boat with
fixed capacity

CVD

Polishing pad with
fixed capacity

Polishing

only handle between 30 and 60 wafers, depending on the
size of the wafers. In the final polishing stage, the batch
size increases because the polishing plate is larger than the
lapping plate. Therefore, in such a typical wafer fabrication
process, there is a need to group wafers into batches before
processing.

The main purpose of process control is to reduce output
variation. Variation is also closely related to process yield
and productivity. As Montgomery (2005, p. 4) pointed out,
“quality is inversely proportional to variability.” That is, the
larger the variation is, the poorer the quality becomes. From
the commonly used definition of the quality loss function,
�(yt − τ )2, where τ is the target of the process output and
yt is the measure of an individual output, we see the neces-
sity to minimize output variability. Large variability in the
process output may lead to a higher chance of producing
nonconforming products, hence reducing yield and harm-
ing productivity. As ITRS (2009) reported, the yield and
product maturity assumptions that are commonly used in
some semiconductor manufacturing sections (microproces-
sor unit, DRAM, flash) is around 75–85%. Among others,
random and systematic mechanisms are the major sources
that limit the yield. A better understanding of the produc-
tion system and a better coordination among incoming ma-
terials, machines, manpower, and procedures are expected
to reduce variation, improve quality, and hence boost yield
and productivity.

In semiconductor manufacturing, R2R process control
is one main way to stabilize process output, reduce vari-
ation, and improve quality (see, for example, Del Castillo
and Hurwitz (1997), Tsung and Shi (1999), Jin and Tsung
(2009), and Lin and Wang (2012)). Most traditional R2R
controllers are designed to take real-time or delayed pro-
cess output information and continuously generate updated
recipes to compensate for process shifts or drifts. Let yt be
the process output of run t. Then, a commonly assumed
R2R process model is given by (see the review work by Del
Castillo and Hurwitz (1997) and references therein):

yt = α + βut + dt, (1)

where α and β are the model intercept and slope, respec-
tively; ut represents the control settings (recipe) applied to
run t; and dt denotes the process disturbance. To control
such a process, the Exponentially Weighted Moving Av-
erage (EWMA) R2R controller proposed by Sachs et al.
(1995) is one of the most fundamental and popular algo-
rithms. Suppose the initial estimates of parameters α and
β in Equation (1) are a0 and b, respectively. The EWMA
controller updates the estimate of α repeatedly at the end
of each run when a new output becomes available in the
following way:

αt = ω (yt − but) + (1 − ω) at−1,

and the control action for run t is set to ut+1 = (τ − at)/b
so that the expected output is on target. The smoothing
parameter ω here can be tuned to respond to fast or slow
process dynamics. If the process disturbance dt is a first-
order integrated moving averages (IMA) time series, di =
di−1 + εi − θεi−1, where θ is the moving average coefficient,
and the controller uses ω = 1 − θ , the EWMA controller is
the optimal one to compensate for the disturbance series.

Following the initial work of Sachs et al. (1995), exten-
sive studies have been carried out that have considered dif-
ferent disturbance models in the target process, such as
the white noise model, the AutoRegressive Moving Av-
erage (ARMA) time series model, and the deterministic
drifts model. Target to each particular type of assumed dis-
turbance model, different controllers have been proposed.
For example, the double-EWMA controller (Butler and
Stefani, 1994) and the variable EWMA controller (Tseng
et al., 2007) can be used to compensate deterministic
drift; the controller (Tsung and Shi, 1999) can compen-
sate proportional–integral–derivative for the ARMA dis-
turbance series. The self-tuning controller (Del Castillo
and Hurwitz, 1997) is capable of recursively updating the
estimates of all unknown parameters. The general har-
monic rule controller (He et al., 2009) is designed for
a wide range of disturbances. The categorical controller
(Wang and Tsung, 2007, 2010; Shang et al., 2009; Lin and
Wang, 2011) is designed to operate in the scenario when
continuous observations are difficult to collect. In addi-
tion, the multivariate version of the EWMA and double-
EWMA controller was introduced in Ingolfsson and Sachs



660 Wang and Han

Table 2. Comparisons of R2R controllers

Controller Main features

EWMA Optimal for processes with an IMA(1,1)
time series if properly tuned

Double-EWMA Consideration of IMA(1,1) disturbance
and a deterministic drift

Self-tuning Separation of parameter estimation and
process control; recursive least squares
is used to estimate all unknown
parameters

PID Designed for ARMA(1,1) disturbance
series

General
harmonic rule

Designed for IMA(1,1), ARMA(1,1), or
ARIMA(1,1) disturbance; robust to
parameter estimation uncertainty

Categorical Useful when categorical instead of
continuous observations are available

Dead-band Consideration of adjustment cost

(1993) and Tseng et al. (2002). The dead-band control strat-
egy considers the adjustment cost (Lian et al., 2006). Del
Castillo et al. (2003) provided a unified view of a wide
collection of controllers and formulated the R2R control
problem in a linear quadratic Gaussian framework. Such a
formulation can be generalized to handle more complicated
process and disturbance models. The main features of these
controllers are summarized in Table 2 for comparison.

However, all of these controllers work in a way that only
process output deviations are taken into account to update
model estimates and generate recipes; the coordination be-
tween upstream and downstream stages are not considered.

In a multistage production process, one major source of
variation is the incoming material. That is, the output of an
upstream process inevitably contains variation; such varia-
tions naturally propagate to downstream processes and are

most likely enlarged. However, the above R2R controllers
only use the feedback information to generate recipes; feed-
forward information from preceding stages, although im-
portant and also available in semiconductor manufactur-
ing, is not considered by these controllers.

To depict the features of batch-based production more
clearly, we discuss the lapping stage in this section in greater
detail. Figure 1 shows a schematic plot of the process. Each
lapping plate is equipped with rotating rings, and each ring
has several wafer slots to hold the wafers for processing.
Therefore, wafers that arrive at the lapping stage are first
grouped into batches with a predetermined size. It is known
that a lapping process often suffers from disturbances such
as plate wear-out, slow temperature drift, and slow slurry
changes. To improve the output quality (e.g., increase the
thickness uniformity), recipes (which include settings such
as the rotation speed, upper plate pressure, and lapping
time) of the lapping process are constantly updated by an
R2R controller. The wafer quality is usually characterized
by parameters including thickness, total thickness varia-
tion, and total indicator reading, among others (Lin and
Wang, 2011). If all of the batches have the same or similar
quality, the traditional R2R control strategy, which only
considers process disturbances and ignores the differences
between incoming batches, is sufficient for such a process.
An appropriate R2R controller can help reduce quality
variation due to process drift or shift. Nonetheless, if the key
measures of incoming batches differ significantly, ignoring
such information may lead to serious quality deterioration.

As a simple illustration, suppose that wafer thickness
is a highly important parameter for quality control and
that lapping time is used to control the amount to be re-
moved from the wafer to produce a consistent thickness.
A traditional R2R controller would assume that the in-
put thickness values of all batches are equal and calculate
the lapping time based on the output thickness. While it is

Fig. 1. Parameters and flow of the lapping stage (color figure provided online).



Batch-based run-to-run controller 661

easy to understand that for some batches that are thicker
or thinner than a normal batch, longer or shorter lapping
times should be employed. Such incoming thickness infor-
mation, together with the real output thickness information
from the previous run, should be considered by the R2R
controller when updating its recipes. In addition, the same
process settings are applied to all samples in the same batch,
and different settings could be applied to different batches.
Therefore, we should try to make wafers in the same batch
more similar but allow difference between batches; such
differences should also be used to guide the generation of
recipes for new runs.

Therefore, in this work, we aim to develop a new R2R
control strategy in the following manner. To address the
capacity constraint, a batch allocation algorithm is first de-
signed to minimize variation within the batch by putting
similar wafers into the same batch; an improved R2R feed-
back control algorithm is then incorporated to produce
recipes that consider both feedback and incoming infor-
mation.

The remainder of the article is organized as follows:
Section 2 discusses process models and proposes a new
control algorithm called batch-EWMA. Section 3 intro-
duces a fixed-capacity K-means clustering algorithm to
minimize batch variation. The performance of the newly
proposed batch-EWMA controller is studied in Section 4.
Finally, Section 5 concludes this work with topics for future
research.

2. Process modeling and the batch-EWMA controller

Similar to the model in Equation (1), here we study a batch-
based process and use the following equation to character-
ize the output of the process when both input and recipe
information are considered:

yi j = α + aTxi j + bTui + di , (2)

where yi j , i = 1, . . . , n, j = 1, . . . , M, is the measure of the
j th product in batch i after processing; xi j is the measure
of the same product before processing; α is the intercept;
and ui is the recipe for batch i . Here, we assume that batch
i , i = 1, 2, . . . , is processed sequentially at time t = i . To
emphasize the batch-based feature, we use subscript i in-
stead of t to index each batch. The process disturbance di
is assumed to be a white noise or an IMA time series.

In the traditional EWMA control algorithm, the inter-
cept parameter α is used to represent potential faults such
as initial setup bias, parameter estimation bias, or process
mean shift or drift. Therefore, this parameter is continu-
ously updated after each production run based on a known
process output. In Equation (2), large wafer differences are
reflected in the variation of xi j . Therefore, recipe ui could
be optimized to compensate for changes in incoming mate-
rials if xi j is known. In the lapping stage, such information
could be obtained from an inspection machine.

In should be noted that the interactions among con-
trollable factors and incoming variables are assumed to be
negligible in Equation (2). For the lapping process we illus-
trate in this work, such an assumption is supported by an
analysis of the physical mechanism and engineering knowl-
edge. If the interactions among these factors are significant,
Equation (2) should be extended to take these effects into
consideration. In such cases, the following batch allocation
scheme applies and the R2R control algorithm should be
changed accordingly. However, the idea of improving qual-
ity through the coordination between upstream and down-
stream stations by using incoming information and R2R
process control is still important and should be pursued.

To achieve a higher level of process capability and quality,
the process recipes should be optimized such that the Mean
Square Error (MSE) of the process output is minimized. Let
τ be the target value of yi j . Then, the MSE of n batches,
each with a fixed batch size M, is given by

MSE = 1
nM

n∑
i=1

M∑
j=1

(yi j − τ )2 (3)

or, equivalently,

MSE = 1
nM

n∑
i=1

M∑
j=1

(yi j − μi )2 + 1
n

n∑
i=1

(μi − τ )2, (4)

where μi is the average output value of batch i .
The objective of R2R control is to minimize Equation

(4). In Equation (4), the first term measures the mean square
deviation of each wafer from the batch average, whereas the
second term measures the mean square deviation of each
batch from the target. That is, the total quality variation
in a batch manufacturing process can be divided into two
parts: within-batch variation and batch-to-batch variation.

Equation (2) shows that each output yi j is determined by
two factors: the incoming information xi j and the recipe ui .
An identical recipe is applied to all wafers in the same batch.
Therefore, minimizing within-batch variation is equivalent
to minimizing the variation in the incoming information
xi j of the same batch. That is, wafers allocated in the same
batch should be similar. Once a batch allocation scheme
is determined, the recipe should be designed based on the
information of each batch. In this way, even if one batch
is different from another, the customized recipe generated
by an R2R controller could be used to move all batches
toward the same quality target and thereby minimize the
overall MSE. Because this procedure involves both batch
allocation and R2R EWMA control, we name this strategy
the batch-EWMA controller.

The structure of the proposed batch-EWMA controller is
illustrated in Fig. 2. Different from the traditional structure
shown in Del Castillo and Hurwitz (1997) and others, the
input information xi j also appears in the framework and is
fed into the controller.
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Fig. 2. Schematic structure of the batch-EWMA controller.

The batch-EWMA controller consists of two main com-
ponents: a batch allocator and a recipe generator. First,
the batch allocator groups similar wafers into batches with
small wafer-to-wafer variations. Then, a control algorithm
is put into place to generate control recipes for each batch.
It should be noted that although each batch has its own
level of incoming values, the batches share certain com-
mon information, such as intercept α and coefficient b.
These parameters are determined by the physical process-
ing mechanism of the lapping stage, and all wafers should
obey the same material removal mechanism.

In this article, we modify the widely used EWMA con-
troller to generate recipes because this controller is capable
of compensating for initial bias and non-stationary IMA
disturbances. The modification is made to take incoming
information into consideration. In the following section, we
first introduce the recipe generation algorithm by assuming
that wafers are already grouped into different batches; in
addition, the means of all batches x̄i are known. The batch
allocation algorithm is presented and its performance is
studied in the subsequent section.

It is emphasized that the choice of the control algorithm
heavily depends on the assumed process dynamics. Other
types of controllers, including those introduced in the In-
troduction section, could be adapted to replace the EWMA
controller used here if the true process has a totally differ-
ent dynamics structure. In addition, Apley and Kim (2004)
and Wang and Tsung (2007) emphasized that when param-
eter estimation uncertainty is being considered, the control
action is usually more conservative than the usual case. A
cautious controller may be employed if such uncertainty is
significant.

To implement an R2R controller using Equation (2),
initial estimates of model parameters need to be obtained
first. In practice, these parameters could be estimated of-
fline using design of experiments or regression analysis
based on historical data. The R2R controller can then
recursively update parameter estimates and help generate
recipes more suitable for each run. However, initial val-
ues could potentially affect control stability (see, for exam-
ple, Ingolfsson and Sachs (1993), Tseng et al. (2002), and
Good and Qin (2006) for the stability conditions of single-

input–single-output models with an EWMA controller and
multi-input–multi-output models with an MEWMA con-
troller).

Let αi−1 be the estimated intercept parameter before
batch i . To compensate for initial estimation bias and po-
tential process shifts or drifts, when the new output from
batch i becomes available, the intercept parameter is first
updated using an EWMA equation as follows:

αi = ω(yi − aTx̄i − bTui ) + (1 − ω)αi−1, (5)

where ω is a turning parameter.
To minimize batch differences (the second term in Equa-

tion (4)), the output of each batch should target to τ . Based
on the derivation in Ingolfsson and Sachs (1993), the recipe
for the next run should be selected to satisfy:

τ = αi + aTx̄i + bTui . (6)

The solution for run (i + 1) is then chosen as the projec-
tion of ui onto the contour τ = αi−1 + aTx̄i + bTu:

ui+1 = τ − αi − aTx̄i

bTb
b +

(
I − bbT

bTb

)
ui . (7)

Solution (7) is an extension to the solution given by In-
golfsson and Sachs (1993). The only difference is the newly
added term −aTx̄i , which is used to account for the vari-
ation in the incoming workpieces. As suggested by Ingolf-
sson and Sachs (1993), this choice achieves the objective
stated in Equation (6) and minimizes recipe changes be-
tween runs, as measured by its Euclidian norm:

‖ui+1 − ui‖ =
√

(ui+1 − ui )
T (ui+1 − ui ).

3. A fixed-capacity K-means clustering algorithm

As shown in Equation (4), the total output variation can be
divided into two parts: within-batch variation and batch-
to-batch variation. Batch-to-batch variation is expected to
be reduced by the controller introduced in the previous
section; the location of all batches is driven toward the same
target value by the customized recipes. In this section, we
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introduce a batch allocation algorithm to reduce within-
batch variation. The batch allocator should form clusters
by putting similar wafers in the same batch. Considering
the capacity constraint of the machine for each processing
stage, as illustrated in Table 1, the size of each cluster is
restricted by each machine.

3.1. A modified K-means clustering algorithm

Considering the process model in Equation (2), we can
rewrite the objective function in Equation (4) as follows:

MSE = 1
nM

n∑
i=1

M∑
j=1

(αi + aTxi j + bTui − μi )2

+ 1
n

n∑
i=1

(μi − τ )2
.

The first term in the equation measures the deviation of
each wafer from its batch mean. Using μi = αi + aTx̄i +
bTui , the first term becomes

M1 = 1
nM

n∑
i=1

M∑
j=1

(aT(xi j − x̄i ))2 (8)

or, equivalently,

M1 = 1
nM

n∑
i=1

M∑
j=1

(xi j − x̄i )�−1(xi j − x̄i ),

where

�−1 = diag
{
a2

1, · · · , a2
d

}
.

Equation (8) transforms the within-batch variation in the
process output to the within-batch variation in the process
input. After this transformation, the two terms, within-
batch variation and between-batch variation, become in-
dependent. Therefore, the separate minimization of both
terms would lead to the minimization of the overall MSE.
The minimization of the between-batch variation is con-
tributed by Equation (7), which produces a customized
recipe for each batch based on their respective batch mean;
the minimization of the within-batch variation can be ex-
pressed as follows:

min

⎛
⎝ 1

nM

n∑
i=1

M∑
j=1

(xi j − x̄i )�−1(xi j − x̄i )

⎞
⎠ , (9)

which could be minimized by a clustering algorithm.
K-means is a classic algorithm in data mining for clus-

tering (see Sağlam et al. (2006) for a brief summary of the
existing works on this basis; the method is also introduced
in popular texts such as Kaufman and Rousseeuw (1990),
Hastie et al. (2001), and Everitt et al. (2011)). The Euclidean
or statistical distance between an observation and a cluster
mean is used to measure similarity; samples are partitioned

into clusters by minimizing an objective function analogous
to Equation (9). In the conventional K-means algorithm,
k cluster centers are first initialized and then each observa-
tion is assigned to a nearest cluster (or create a new cluster
the point being far from all centers). After the assignment,
all cluster centers are updated and then all points are re-
assigned to their nearest clusters (since the cluster centers
may have changed after the assignment). In this process,
new clusters may be created and existing clusters merged.
The procedure is repeated until the assignment of all points
remains unchanged. More details about the K-means algo-
rithm can be found in Hastie et al. (2001).

The heuristic K-means algorithm does not always guar-
antee optimality (MacQueen, 1967). Selim and Ismail
(1984) pointed out that the K-means algorithm is sensitive
to the initial selection of cluster centers. They also provided
a rigorous proof of the convergence of the K-means-type
algorithm and suggested ways of obtaining local minima
when it may fail. Phanendra Babu and Narasimha Murty
(1993) suggested that repeating the algorithm several times
with different starting points can give a more reliable clus-
tering solution, although the global optimality is still not
guaranteed. Due to its simplicity in implementation, the K-
means algorithm is perhaps the most widely used algorithm
in practice (Sağlam et al., 2006).

However, the traditional K-means algorithm cannot sat-
isfy the demand of grouping wafers in semiconductor man-
ufacturing directly since the resulting cluster size is uneven.
In real production, to make full utilization of machine ca-
pacity, the number of products in each batch should be
equal and also fill the capacity. It is possible that the total
number cannot be exactly divided by the batch number. In
such cases, it is a common practice to fill all early batches
but leave space in the last one.

Considering the batch size limitation in wafer batch al-
location, we modify the conventional K-means algorithm
slightly. Suppose that there are nM points to be assigned
into n equal-sized clusters. The clustering procedure is il-
lustrated as follows.

1. Randomly assign all points into the n equal-size D clus-
ters; calculate the within-batch variation of each batch
and sum them up.

2. For point i = 1 in batch 1, try to switch it with a point in
a different batch and then calculate the overall within-
batch variation. Then try to switch point i with another
point, until all points that are not in batch 1 are tested.
Identify the point where, if it is switched with point i , the
largest reduction of within-batch variation is achieved.
Finally, switch point i with the selected point.

3. Repeat Step 2b for all nM points.
4. Repeat Steps 2 and 3 until no further switch is needed.

Then, the total within-batch variation is minimized.

The above switch operation guarantees that the number
of clusters is unchanged, the number of points in each clus-
ter is also fixed, and, in the meantime, the within-batch
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Fig. 3. Results of clustering a sample of 120 two-dimensional observations: (a) K = 2; (b) K = 3; (c) K = 4; and (d) K = 5 (color
figure provided online).

variation is minimized. If unequal batch sizes are initially
assigned, the procedure still helps keep all batch sizes un-
changed. Therefore, the above method still works if the to-
tal number of products cannot be assigned to equal-sized
batches. In the semiconductor manufacturing process we
discussed, the above modified K-means algorithm is capa-
ble of allocating wafers in such a way that the practical
engineering constraints are satisfied.

The modified K-means algorithm can only provide a lo-
cal minimum. As suggested by one referee, repeating the
algorithm with different initial assignments may generate a
better solution. This has been confirmed by our simulation
studies. Therefore, we incorporate this strategy in the fol-
lowing studies when minimizing the within-batch variation.

3.2. Performance of the fixed-capacity clustering algorithm

In this section, we study the performance of the pro-
posed clustering algorithm via numerical simulations. Be-

cause it is difficult to graphically represent clustering results
with more than three dimensions, we first simulate a two-
dimensional process with each xi j having two variables. A
set of 120 randomly selected samples is generated by as-
suming xi j (1), xi j (2) ∼ N(0, 1). The number of clusters to be
generated is set to two, three, four, and five. Without loss of
generality, let a = (1, 2)T. Thus, we have �−1 = diag{1, 4}
in the objective function of Equation (9).

The clustering results are shown in Figs. 3(a) to 3(d). It is
clear that all of the points are partitioned into equally sized
batches. The points in the same cluster are close to each
other, indicating a small within-batch variation. Different
batches have distinct location shifts; therefore, the batch-
to-batch variation is large.

Table 3 compares the within-batch variations resulting
from two methods: those from random grouping and those
from clustering using the modified K-means algorithm. It
is evident that if observations are clustered by the fixed-
capacity K-means algorithm, the within-batch variation is
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Table 3. Comparison of within-batch variations using different
clustering schemes

Number of Random Fixed-capacity
clusters assignment K-means

2 4.54 2.27
3 4.52 1.57
4 4.45 1.19
5 4.41 1.01

reduced significantly by between 50 and 77% compared
with the variation produced by random grouping.

3.3. Remarks and other algorithms for batch allocation

The modified K-means algorithm introduced above serves
as one way to minimize the within-batch variation, and
hence, the overall variation in quality control. It should
be noted that, similar to the conventional K-means algo-
rithm that is limited to a local optimal solution (MacQueen,
1967; Sağlam et al., 2006), the modified method can only
find local minima. In addition, there are other clustering al-
gorithms available for achieving the minimization of Equa-
tion (9).

As one referee suggested, batch allocation can be formu-
lated as an integer programming problem and solved by
existing algorithms. Sağlam et al. (2006) also introduced
one way to formulate the clustering problem as a mixed-
integer programing problem and developed a method to
solve it. To solve Equation (9), we can define a binary de-
cision variable ak,i ; ak,i = 1 means that the kth point is
assigned to batch i . We further force:

n∑
i=1

aki = 1, ∀k, k = 1, . . . , K,

so that each point is assigned to one batch only, and

K∑
k=1

aki = M, ∀i, i = 1, . . . , n,

so that the batch contains exactly M points. The objective
function in Equation (9) is cubic and can be solved by any
Mixed-Integer Non-Linear Programming (MINLP) solver,
such as the GAMS/DICOPT package (Grossmann et al.,
2002). Simulation results show that the solutions given by
the integer programming and the modified K-means are
either identical or very close. Similar to the K-means al-
gorithm, the MINLP solver can only guarantee a local
optimum.

Compared with the modified K-means algorithm, the
above MINLP formulation is straightforward and can be
solved using existing commercial optimization packages.
However, such a formulation may result in a large number
of decision variables and thus increase the computational
demand.

It should be noted that the modified K-means algorithm
tries to minimize the overall within-batch variation, but
it cannot guarantee that the variation of all clusters is
minimized. Figure 4 shows the evolution of the within-
batch variation of each batch and the summarization of
all within-batch variations. It can be seen that as the algo-
rithm runs, the summarization of the within-batch vari-
ation decreases, whereas the within-batch variations of
certain batches may increase slightly. This means that
switching a point from one batch to another batch does
increase the within-batch variations, although the other
one is decreased with a larger magnitude.

To use the batch allocation algorithm, there is an ap-
parent need for data to characterize incoming products.
In some existing applications, such information may not
be readily available. This practical issue should be tackled
from two aspects.
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1. In some processes, there is already a considerable
amount of information available since advanced mea-
surement machines can be used to collect continuous,
multi-dimensional, and complex data. However, such
information is unknown to the practitioners. By default,
only a very rough fail/pass conclusion is used. In such
cases, the quality practitioners should enquire about the
capability of their measurement machine and make such
information available.

2. If the coordination between the upstream and down-
stream stages is very important; intentional collection
of needed information may be more cost-effective than
just letting the defects happen.

4. Performance study of the batch-EWMA controller

To group incoming workpieces into different batches, we
proposed to use the fixed-capacity K-means algorithm in
the previous section to reduce within-batch variation. Since
customized recipes are designed for each batch, all batches
should be driven to a common target value. Therefore, the
output quality after processing is expected to be improved.
In this section, we apply the batch-EWMA controller to
the lapping process and investigate its performance. The
control performance is measured by the MSE given in
Equation (3).

In this study, we first simulate an order of 100 ingots; each
ingot generates 360 wafers after slicing. Batch allocation
is required before the lapping stage for each ingot. The
lapping batch is assumed to be 30. Therefore, each ingot is
partitioned into 12 batches; 36 000 wafers in the form of
1200 batches are processed in total and the corresponding
MSE is calculated. The disturbance in the lapping process
is assumed to follow a normal distribution or have an IMA
time series. After the simulation study, a real dataset is also
analyzed to verify the controller’s performance.

4.1. Performance study under normal distributed
disturbance

Without loss of generality, suppose that the incoming qual-
ity is measured by five input variables; that is, the dimension
of xi j is five; there are four controllable variables, which
means that ui is a four-dimensional vector. The values of
xi j are generated from the standard normal distribution
N(0, 1). Suppose that the true values of the process param-
eters are given by

α = 10, a = (1, 1, 1, 1, 1)T
, b = (1, 1, 1, 1)T

.

The process disturbance di in Equation (2) is assumed to
follow the normal distribution N(0, 1). The process target is
set as 10. A dataset is generated using the above parameter
settings; this dataset is assumed to be a historical one for
initial parameter estimation.

First, we fit the linear model in Equation (2) with the
presence of xi j to the dataset; the estimates obtained are
shown as follows:

α0 = 9.58, a = (1.02, 0.93, 1.09, 1.06, 0.92)T
,

b = (1.24, 0.94, 0.87, 1.19)T
.

If xi j is excluded from the regression model, we have

α0 = 9.26, b̂ = (0.98, 1.02, 0.51, 1.03)T
.

The discount factor ω in Equation (5) is set to 0.3.
Four hypothetical scenarios are studied. The first sce-

nario only uses the traditional EWMA controller. All work-
pieces are randomly grouped. In this situation, the input in-
formation xi j is not utilized by the controller. At the end of
each run, when an output becomes available, the recipe for
the new run is determined based on the following equation
(see Ingolfsson and Sachs (1993) for more details):

ui+1 = τ − αi

bTb
b +

(
I − bbT

bTb

)
ui .

In the second scenario, xi j is taken into account by the
controller shown in Equation (7). However, the incoming
wafers are still randomly clustered.

In the third scenario, incoming products are first clus-
tered using the fixed-capacity K-means algorithm. How-
ever, the R2R controller ignores such information and still
treats all clusters equally.

In the fourth scenario, the proposed batch-EWMA con-
trol strategy is applied. Wafers are first clustered using the
fixed-capacity K-means algorithm and the within-batch
variation is minimized; then, the EWMA controller in
Equation (7) is applied to generate recipes for each batch.
The control performance of the different scenarios is shown
in Table 4.

It can be seen from Table 4 that scenario 2 per-
forms slightly better than scenario 1. That is, the MSE is
reduced if the input information is considered when gener-
ating recipes. However, since the clusters are formed ran-
domly, the additional benefit by doing this procedure is not
significant. Scenario 3 turns out to be the worst. That is, if
the incoming products are grouped (then the between-batch

Table 4. Performance comparison under normally distributed
disturbance

Utilization Std.
of input dev.

Scenario Clustering method information MSE of MSE

1 Random clustering Not utilized 6.19 1.65
2 Random clustering Utilized 6.17 1.59
3 Fixed-capacity

K-means clustering
Not utilized 7.08 4.73

4 Fixed-capacity
K-means clustering

Utilized 3.87 1.20
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variation becomes large), but such grouping information is
not considered by the controller, the control performance
even deteriorates. This happens since the EWMA controller
assumes that all batches have a common intercept param-
eter and it thus tries to update this parameter after each
run when seeing a deviation between the true output and
the target. However, since the output varies a lot due to the
large batch difference, the estimated intercept parameter is
wrongly changed repeatedly. Finally, if the fixed-capacity
K-means algorithm is also implemented, compared to sce-
nario 2, the MSE is lowered by 37%.

4.2. Process with a disturbance following an IMA model

As suggested in Montgomery et al. (2000), uncontrolled
disturbances in certain industrial processes can be de-
scribed by an IMA(1,1) series. Therefore, in this section,
we also study the performance of the proposed controller
when an IMA(1,1) model is presented in the process; the
disturbance series di in Equation (2) takes the following
form:

di = di−1 + εi − θεi−1,

where εi is a white noise series, εi ∼ N (0, 1), and the coef-
ficient θ is set to 0.6. All other model parameters are the
same as those given in Section 4.1.

Similar to Section 4.1, four different clustering/control
strategies are applied to control 12 batches of simulated
wafers. The control performance is shown in Table 5. The
general performance pattern is similar to that shown in
Table 4. Once again, compared to scenario 2, the overall
MSE is reduced significantly by 38% when the proposed
batch-EWMA control framework is utilized.

4.3. Performance study using a real dataset

In this section, we apply the proposed batch-EWMA con-
troller to a real dataset collected before the lapping stage in
semiconductor manufacturing. The dataset contains infor-
mation on 360 wafers. Before entering the lapping stage, all
wafers are measured by an automated machine; the status

Table 5. Performance comparison under IMA disturbance

Utilization Std.
Clustering of input dev. of

Scenario method information MSE MSE

1 Random clustering Not utilized 6.20 1.68
2 Random clustering Utilized 6.22 1.59
3 Fixed-capacity

K-means
clustering

Not utilized 7.16 4.74

4 Fixed-capacity
K-means
clustering

Utilized 3.86 1.22

Table 6. Estimated parameter values of the process model

Initial model Initial model
for the for the batch-EWMA

Parameters EWMA controller controller

Intercept 550.439 584.060
a1 — −0.0574
a2 — −0.0238
a3 — 0.9316
a4 — 0.0603
a5 — 0.0225
b1 −0.0451 −0.0744
b2 0.1417 0.1607
b3 −0.0252 −0.0272
b4 −0.0026 −0.0016

of each wafer is characterized by five variables, which is rep-
resented by xi j in the model. In the lapping stage, four con-
trol variables are designed to be controllable; the settings of
these variables are to be determined by the R2R controllers.
One main target of the lapping stage is to achieve thickness
uniformity. Therefore, the goal of our R2R controllers here
is to achieve a minimum thickness variation of all wafers.

To understand the behavior of the lapping machine, de-
signed experiments were conducted in practice and data
were collected for model building. For performance com-
parison, we need to generate two linear models for initial-
izing R2R control. One model, designed for the proposed
batch-EWMA controller, has the input information xi j in
the formula; the other model, designed for the conventional
EWMA controller, excludes xi j from the formula since this
controller does not use such information in recipe genera-
tion. Parameters of the fitted models are shown in Table 6.
A normality test confirms that the residuals have a normal
distribution.

The initial control variable is determined based on the
mean of all historical observations:

u = [ 21 25 66 215 ]T.

The capacity of the lapping machine is limited to 30,
which leads to 12 batches for this order. All of these batches
are fed into the process sequentially; the traditional EWMA
controller and the proposed batch-EWMA controller are
applied to the same dataset; common factors in both con-
trollers are set to equal values for a fair comparison. The

Table 7. Performance comparison when applied to the real
example

Clustering Utilization of
Controller method input information MSE

EWMA Random clustering Not utilized 8.15
Batch-EWMA Fixed-capacity

K-means clustering
Utilized 4.99
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Fig. 5. Boxplot of process output under EWMA and batch-
EWMA controllers.

targeted output thickness is 550 μm and the EWMA dis-
count factor in Equation (5) is set to 0.3.

Figure 5 shows the output thickness of the individual
wafers under different control scenarios. The thickness dis-
tribution under the batch-EWMA strategy is clearly more
concentrated than that under the traditional R2R strategy.
As shown in Table 7, the MSE of the simulated wafer thick-
nesses is reduced to 4.99, which is approximately 61.2% of
the MSE produced by the EWMA controller.

5. Conclusions

In certain semiconductor manufacturing processes, work-
pieces have to be grouped into clusters before processing
due to limited equipment capacity. The final output quality
is affect by the within-batch variation and batch-to-batch
variation.

In this article, we proposed a batch-EWMA control strat-
egy based on a practical batch size constraint. A modified
fixed-capacity K-means algorithm is first utilized to cluster
incoming materials and minimize the within-batch vari-
ation. Cluster information is fed to the controller and a
new recipe is generated by the batch-EWMA controller us-
ing the cluster information and the feedback information
from the previous run. In this way, the recipes for different
batches are customized and therefore the between-batch
variation is minimized. Simulation studies reveal that the
new framework can reduce output variation and improve
the product quality significantly.

The control scheme proposed in this article is designed
for a single manufacturing stage. Since a semiconductor
manufacturing process and, in fact, many processes in other
industries usually involve multiple stages, coordinating ad-
ditional stages and their corresponding batch allocation
could be interesting topics for future research.
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