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In many industrial multivariate quality control applications, based on the engineering and operational understanding of how the
process works, when the process variability is out of control it is typically the case that changes only occur in a small number of
elements in the covariance matrix. Under such a premise, we propose a new Phase II Shewhart chart for monitoring changes in the
covariance matrix of a multivariate normal process. The new control chart is essentially based on calculating the likelihood ratio of
testing the hypothesis that the in-control covariance matrix is equal to a known covariance matrix, where the unknown covariance
matrix that appears in the likelihood ratio is replaced by an estimate obtained from a penalized likelihood function. The penalized
likelihood function is derived by adding an L1 penalty function to the usual likelihood. The performance of the proposed chart is
evaluated based on simulations and compared with that of several existing Shewhart charts for monitoring the covariance matrix.
The simulation results indicate that the proposed chart outperforms existing charts. A real example from the semiconductor industry
is presented and analyzed using the proposed chart and other existing charts. Potential future research directions are also discussed.
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1. Introduction

1.1. Literature review and motivation

The methodological development of statistical control
charts continues to flourish in the quality engineering
and statistics literature. Over the last two decades, the
focus has gradually shifted from univariate to multivari-
ate control charts. Advances in modern data acquisition
techniques and computing power mean that multivariate
control charts will play an increasingly important role in
improving the quality of products and services. As sev-
eral authors have already pointed out (see, for example,
Woodall and Montgomery (1999), Stoumbos et al. (2000),
and Woodall (2000)), the multivariate control chart will be
an important area of research in the 21st century.

Beginning with the seminal work by Hotelling (1947),
an extensive literature has been created that considers the
use of multivariate control charts to monitor the process
mean vector. However, control charts to monitor pro-
cess variability, as characterized by the covariance ma-
trix of the multivariate random variable representing the
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correlated quality characteristics being monitored, only be-
gan to be developed in the early 1980s. Some early work
includes Alt (1984), Alt and Bedewi (1986), Healy (1987),
and Alt and Smith (1988). In this period, the representa-
tive control chart was based on the Generalized Likelihood
Ratio (GLR) statistic for testing H0 : � = �0 versus H1 :
� �= �0. The GLR charting statistic takes the form

W = −(n − 1)
[

p + ln
|S|
|�0| − tr

(
�−1

0 S
)]

, (1)

where n is the sample size, p is the dimensionality, S is
the sample covariance matrix of a given sample, |A| is
the determinant of a matrix A, and tr(B) is the trace of a
matrix B.

Between 1990 and 2005, control charts for monitoring
the covariance matrix continued to appear in the literature.
Yeh et al. (2006) gave a detailed account of some of the
developments in this period. Since then, several authors
have proposed new charting schemes for monitoring the
covariance matrix. These include work by Yeh et al. (2005),
Reynolds and Cho (2006), Williams et al. (2006), Huwang
et al. (2007), Hawkins and Maboudou-Tchao (2008), and
Yen and Shiau (2010).
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All of the existing control charts for monitoring the co-
variance matrix consider two key issues:

1. Given individual or groups of observations, how can the
process covariance matrix be efficiently estimated?

2. Given an estimate of the covariance matrix, how can one
devise an effective control charting mechanism?

The consideration of the latter led to control charts based
on GLR (Alt, 1984), a determinant (the |S| chart; Alt and
Bedewi, 1986), conditional entropy (Guerrero-Cusumano,
1995), and decomposition of the sample covariance ma-
trix (Tang and Barnett, 1996a), among others. As for the
consideration of the former first question, for subgroups
of data, the sample covariance matrix is typically used to
estimate the process covariance matrix, with Cumulative
SUM (CUSUM) or Exponentially Weighted Moving Av-
erages (EWMA)-based techniques being typically adopted
for individual observations.

However, most of the existing charts do not take into ac-
count process knowledge gleaned from engineering and op-
erational understanding of how a process works. It should
be noted that from an engineering point of view, not all of
the variables in a multivariate quality characteristic are cor-
related with one another. Instead, subsets of variables exist
in which the variables within the same set are correlated,
whereas variables between different sets are typically uncor-
related. Such a structure may not be reflected in the sample
covariance matrix (or the CUSUM or EWMA version of
it) since non-zero entries in places where there should be a
zero may result from calculating the sample covariance ma-
trix. Also, when the process covariance matrix changes, it is
typically the case that only a smaller set of variables will be
affected. For example, in an important process for silicon
wafer manufacturing called lapping, several correlated vari-
ables are considered to be critical factors that determine the
uniformity of the thickness of a wafer and therefore need to
be closely monitored. Based on engineering knowledge of
the process as well as some empirical evidence, these vari-
ables can be grouped into two sets of variables and, thus,
when the covariances change this only affects some of the
variables.

Similar to most of the existing literature on monitoring
the covariance matrix, our focus in the current article is on
Phase II monitoring. That is, we assume that the in-control
covariance matrix is either known or can be estimated us-
ing Phase I data. Under such a premise, we can further
assume, without loss of generality, that the in-control co-
variance matrix is equal to a p × p identity matrix, where
p is the number of correlated variables to be monitored.
For a process with a general covariance matrix, Hawkins
and Maboudou-Tchao (2008) suggested transforming the
general covariance matrix into an identity matrix by multi-
plying the original observations by a lower triangular ma-
trix (inverse-Cholesky root). The same treatment was also
used by Huwang et al. (2007). Therefore, if only a few of
the variances or covariances change when the covariance

matrix changes, this means that many of the diagonal ele-
ments will continue to have a value of one and off-diagonal
elements zero for an out-of-control covariance matrix, es-
pecially for moderate to large p. Note that this is also the
case for many of the out-of-control scenarios considered
for the simulation studies conducted in the existing litera-
ture. The fundamental question is this: When only a small
number of variances and covariances change in a covari-
ance matrix, are there more efficient ways of estimating
the covariance matrix? Consequently, can a more effective
control charting mechanism be developed for monitoring
the covariance matrix based on more efficient estimates of
the covariance matrix? Our main goal in this research is to
provide some solutions to these two questions.

1.2. A brief overview of the proposed methodology

Statistically speaking, it is less efficient to monitor the
covariance matrix of a p-dimensional process that has
p(p + 1)/2 variance and covariance components if we al-
ready know that most of the off-diagonal elements are in
fact zero. When certain structural information about the
covariance matrix is known a priori, it is possible to take
such information into consideration and obtain a more ef-
ficient estimate of the covariance matrix. Dempster (1972)
pointed out that the covariance structure of a multivari-
ate normal distribution can be simplified by forcing the
off-diagonal elements of the inverse of the covariance ma-
trix to zero. Huang et al. (2006) developed a data-driven
method to identify parsimony in the covariance matrix.
Based on the modified Cholesky decomposition proposed
by Pourahmadi (1999, 2000), the authors proposed to add
L1 or L2 penalties to the normal likelihood in order to
shrink the off-diagonal elements to zero. This reparameter-
ization treatment can guarantee that the resulting matrix
is positive-definite. However, the decomposition method
relies on a hierarchical structure among the variables. De-
composed matrices are obtained by regressing, in the order
in which the variables are listed, the variables that appear
later in the list on the variables that appear earlier in the
list. In situations where the order of variables is not clearly
defined, the results of this method become difficult to
interpret.

Yuan and Lin (2007) proposed to add a Least Abso-
lute Shrinkage and Selection Operator (LASSO)-based L1
penalty to the likelihood function when estimating the in-
verse of the covariance matrix in Gaussian graphical mod-
els. This method also leads to a matrix estimate that is
positive-definite. Rothman et al. (2008) proposed to min-
imize the same penalized likelihood function in a differ-
ent context. By using the Cholesky decomposition rather
than the modified Cholesky decomposition, this scheme
enforces positive definiteness while eliminating the depen-
dency of the resulting estimate on a specific ordering of the
variables.
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In light of the discussed methods that generate sparsity
in the estimate of the inverse of the covariance matrix, this
work proposes a likelihood ratio–based method for moni-
toring the process covariance matrix. Considering the prac-
tical issues discussed earlier, we propose to use a penalized
likelihood function to force the unchanged covariance com-
ponents to zero. The control charting mechanism is then
based on the likelihood ratio for testing the hypothesis that
H0 : � = Ip versusH1 : � �= Ip, where the � that appears
in the likelihood ratio will be replaced by a penalized esti-
mator of �. It should be pointed out that a LASSO-type
penalty function has been applied recently to construct
the control charts for monitoring multivariate mean vector
in the context of statistical process control as well as lin-
ear profile monitoring; see, for example, Wang and Jiang
(2009), Zou and Qiu (2009), and Zou et al. (2010).

The rest of this article is organized as follows. In Sec-
tion 2, we discuss in detail the estimation of the inverse of
the covariance matrix via a penalized likelihood function.
The proposed control chart is also introduced. Section 3
is devoted to the performance evaluation of the proposed
chart as well as a comparison with several existing charts.
The performance of a control chart is evaluated based on
the Average Run Length (ARL), where the run length is
defined as the number of samples taken before the first out-
of-control signal shows up on a control chart. In Section
4, a real example from the semiconductor industry is dis-
cussed and analyzed using the proposed chart and several
existing charts. Conclusions are drawn in Section 5, which
also contains additional discussions on future research
directions.

2. Sparse covariance matrix estimation and monitoring

Let X = (X1, X2, . . . , Xp)T represent a p-dimensional qual-
ity characteristic that needs to be monitored for qual-
ity improvement purposes. We assume that X follows a
p-dimensional normal distribution denoted by Np(μ, �),
where μ and � are the mean and the covariance matrix of
X, respectively. When the process is in control, we assume
that μ = μ0 and � = �0, and μ0 and �0 are known or can
be estimated from Phase I data. Therefore, without loss of
generality, we assume that X follows Np(0, Ip) when the
process is in control, where Ip is a p × p identity matrix.
When the process is out of control, the covariance matrix
changes to a non-identity matrix generally denoted as �OC.
Our focus in the current article is to propose a new control
chart for monitoring changes in the covariance matrix un-
der the premise that the out-of-control �OC remains sparse
in the sense that only a few diagonal elements are not equal
to one and only a few off-diagonal elements are not equal
to zero. Note that the control chart proposed in the cur-
rent article is entirely data-driven in that no knowledge of
the numbers and locations of non-zero off-diagonal and
non-unit diagonal elements is required.

We propose a two-step control charting mechanism. In
the first step, a penalized likelihood function is used to
obtain an estimate of � = �−1, the inverse of the covari-
ance matrix, sometimes referred to as the concentration or
precision matrix. The penalty function is chosen such that
the resulting estimate of � is sparse in the sense that off-
diagonal elements in the estimate close to zero will be set to
zero to ensure sparsity in the estimated �. Once an estimate
of � is obtained, in the second step the charting statistic is
then calculated based on the negative log-likelihood ratio
of testing H0 : � = Ip versus H1 : � �= Ip.

2.1. The penalized likelihood function

Let � be the true but unknown covariance matrix. Given a
sample of size n, X1, X2, . . . , Xn, one can write the negative
of log-likelihood as, up to a constant:

l(X1, X2, . . . , Xn; �) = tr(�S) − ln|�|, (2)

where

S = 1
n

n∑
j=1

(X j − X)(X j − X)T

is the sample covariance matrix and X = 1/n
∑n

j=1 X j . Tra-
ditionally, the Maximum Likelihood Estimator (MLE) of
� can be obtained by minimizing Equation (2). That is,

�MLE = arg min
�

{tr(�S) − ln|�|}. (3)

It is easy to see that �MLE is in fact nS−1/(n − 1).
It is known that a zero off-diagonal element in � indicates

conditional independence (D’Aspremont et al., 2008) be-
tween the two variables given all other variables. The condi-
tional independence among variables is often encountered
in engineering applications. In the semiconductor manu-
facturing process we studied (introduced in more detail in
later sections), we found that conditional independence ex-
ists among many variables, especially if the variables spread
across multiple production stages. Moreover, conditional
independence (or partial correlation analysis) is helpful in
identifying root causes in an engineering system. For exam-
ple, if X1 and X2 are highly correlated but are conditionally
independent given X3, we should not attribute quality de-
terioration in X1 to X2 but should investigate X3 instead.
In such a problem, the conditional independence plays an
important role. Therefore, in this article, we focus on the
sparsity in �, rather than in �.

Under the premise discussed in the Introduction, the
non-zero off-diagonal elements in � indicate changes in
the covariances of the corresponding variables. However,
since S−1 is calculated from sample observations, it is highly
likely that the true zero elements in � are estimated to be
non-zero. Therefore, we propose to utilize an estimation
method capable of producing an estimate of � that is sparse,
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essentially by forcing elements in the estimated � with small
values to zero.

In the context of variable selection and estimation of a
sparse matrix, it can be accomplished by adding a penalty
function to the minimization of Equation (2). For the for-
mer, the L1 penalty function has been shown to be capable
of removing insignificant variables (Tibshirani, 1996). As
for estimating a sparse matrix, incorporating an L1 penalty
in Equation (2) can help shrink estimated elements with
small quantities to zero, thereby inducing sparsity in the es-
timated matrix. Rothman et al. (2008) added an L1 penalty
to Equation (2) on all of the off-diagonal elements of �. On
the other hand, D’Aspremont et al. (2008) and Friedman
et al. (2008) investigated the use of the L1 penalty on all
elements of �.

As for estimating � to construct the proposed control
chart, we found from conducting our trail simulations that
penalizing all elements of � produced estimates of � that
resulted in a more effective control charting mechanism.
Therefore, in this work, we propose to add an L1 penalty
function aimed at penalizing all elements of �. Specifically,
given a sample X1, X2, . . . , Xn, the penalized negative like-
lihood function, which is a modified version of what can be
found in Rothman et al. (2008), can be written as

l(X1, X2, . . . , Xn; �) = tr(�S) − ln|�| + λ ‖�‖1 , (4)

where ||A||1 = ∑p
j=1

∑p
i=1 |aij| for A = [aij]p×p, and λ is

a data-dependent tuning parameter that can be tuned to
achieve different levels of sparsity of the � estimate thus
obtained.

Let �λ be the solution to the objective function in Equa-
tion (4) for a given λ; that is,

�λ = arg min
�>0

{l(X1, X2, . . . , Xn; �)}. (5)

Friedman et al. (2008) provided algorithms for solving the
objective function (4) under the constraint that the solution
�λ is a symmetric positive-definite matrix. It is expected
that, by properly tuning λ, one can obtain a more efficient
estimate of � such that if the process is in control, most of
the off-diagonal elements are estimated to be zero and the
diagonal elements stay unchanged. If the process goes out
of control, the off-diagonal non-zero elements and changed
diagonal elements in the resulting estimate of � can truly
reflect the changed relationships among the variables.

2.2. The penalized likelihood ratio control chart

Having obtained �λ in Equation (5), we now propose a
new control chart for monitoring the covariance matrix.
The charting statistic is based on the likelihood ratio for
testing the hypothesis H0 : � = Ip versus H1 : � �= Ip. The
corresponding negative log-likelihood ratio can be written
as, up to a constant:

� = tr(S) − tr(�S) + ln|�|. (6)

If � is replaced by the usual MLE, nS−1/(n − 1), the � in
Equation (6) is equivalent, up to a constant, to the statistic
expressed in Equation (1). As it is convenient to detect
changes in a covariance matrix by examining the likelihood
ratio, the statistic W in Equation (1) and other modified
versions of it have been used by many authors to develop
control charts for monitoring the covariance matrix (see, for
example, Yeh et al. (2004) and Hawkins and Maboudou-
Tchao (2008)). In this work, we propose to substitute � in
Equation (6) with the estimate �λ obtained in Equation (5).
Specifically, the proposed chart calculates, for each given
sample of size n,

�λ = tr(S) − tr(�λS) + ln|�λ|, (7)

where �λ is obtained from Equation (5) for a given λ. It
should be noted that while the negative log-likelihood in
Equation (6) is always positive, there is no guarantee that
�λ in Equation (7) is always positive since � in Equation
(6) is not replaced by the MLE but by the �λ obtained in
Equation (5). Since the proposed chart is derived from a
penalized likelihood ratio, it will be called the Penalized
Likelihood Ratio (PLR) chart. The PLR chart signals
an out-of-control signal when �λ > UCLλ, where UCLλ

is chosen, for a given λ, to achieve certain desirable in-
control ARL. Note that �λ is intrinsically different from
the charting statistics used by Hawkins and Maboudou-
Tchao (2008) and other authors in that the �λ used in
calculating �λ is obtained by minimizing a penalized like-
lihood function. In this study, all of the control limits were
obtained using Monte Carlo simulations. The code is avail-
able from the second author upon request.

2.3. The sparsity in �λ and S

The idea behind the use of �λ in the likelihood ratio is that
since �λ is obtained based on a penalized likelihood func-
tion aimed at forcing small off-diagonal elements to zero,
the resulting �λ, unlike the S−1, should produce a sparsity
closer to �−1. To assess the preservation of sparsity in �λ

and in S, we first generated a sample of 50 observations
from Np(0, Ip) for p = 5. The sample was then used to
calculate the sampled covariance matrix S, �λ, and �−1

λ ,
which is an estimate of the covariance matrix, for λ = 0.05
and 0.2. The resulting S, �λ, and �−1

λ are shown in Fig. 1.
It can be seen from Fig. 1 that S contains no zero elements
even though many of the off-diagonal elements have values
close to zero. The �λ, on the other hand, does contain zero
entries and by choosing λ = 0.2, �λ is almost diagonal as
expected, except Cov(X3, X5) which was estimated to be
0.01. The sparsity in the covariance matrix—i.e., I5 in this
case—is also preserved in �−1

λ , particularly when λ = 0.2.
The results also indicate that increasing λ makes �λ more
sparse. This is intuitive since a larger λ value gives more
weight to the penalty function, thus forcing more elements
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Fig. 1. Comparison of estimated S, �λ, and �−1
λ (� = �0 = I):

(a) S; (b) λ = 0.05, �λ; (c) λ = 0.2, �λ; (d) λ = 0.05, �−1
λ ; and

(e) λ = 0.2, �−1
λ (color figure provided online).

with small values to zero. In fact, letting λ = 0.3 in this
example resulted in a perfectly diagonal �λ.

Now suppose that the covariance matrix has changed to

�a =

⎛
⎜⎜⎜⎜⎜⎝

1 0.5 0.5 0 0
0.5 1 0.5 0 0
0.5 0.5 1 0 0
0 0 0 1 0.5
0 0 0 0.5 1

⎞
⎟⎟⎟⎟⎟⎠ .

Again, we generated a sample of 50 observations from
N5(0, �a) and used the sample to calculate S, �λ, and �−1

λ .
The results are shown in Fig. 2. It can be seen from Fig.
2 that by letting λ = 0.05, some elements in both �λ and
�−1

λ are approaching zero. By setting λ = 0.2, �−1
λ success-

fully generates two blocks in �λ and �−1
λ and preserves the

sparsity of the out-of-control covariance matrix. However,
S still returns non-zero estimates to all entries.

Note that, in general, it is difficult to find a direct con-
nection between the sparsity in �λ and the sparsity in �−1

λ .
However, such a connection may be established in certain
special cases such as block-wise diagonal matrices. That is,
for any given matrix arranged in sub-blocks of matrices, its
inverse matrix can be expressed as[

A 0
0 D

]−1

=
[

A−1 0

0 D−1

]
.

If the resulting �λ has numerous zero entries, one can rear-
range the variables, equivalent to rearranging the columns
and rows, so that the matrix thus obtained, say �

′
λ, is block-

wise (one needs to keep track of the original variables). The
inverse of �

′
λ is also block-wise under the new ordering of

variables. This can help in trying to pinpoint which of the

Fig. 2. Comparison of estimated S, �λ, and �−1
λ (� = �a): (a)

S; (b) λ = 0.05, �λ; (c) λ = 0.2, �λ; (d) λ = 0.05, �−1
λ ; and (e)

λ = 0.2, �−1
λ (color figure provided online).

variances and covariances have changed when the PLR
chart signals an out-of-control sample.

3. Performance evaluation and comparison

In this section, we evaluate the performance of the pro-
posed PLR chart in terms of ARL and compare it to that
of several existing Shewhart charts. We restrict our atten-
tion to existing Shewhart charts since the PLR chart is a
Shewhart chart. It should be pointed out that the PLR
chart can be readily extended to CUSUM or EWMA pro-
cedures by defining some CUSUM or EWMA charting
statistics based on �λ. Such extensions, however, will not
be investigated in the current article.

The existing Shewhart charts selected for comparison in-
clude the traditional likelihood ratio–based chart by Alt
(1984; referred to as the LR chart hereafter); the con-
trol chart based on the conditional entropy by Guerrero-
Cusumano (1995; referred to as the CE chart in the future),
which is essentially the sum of the logarithms of the compo-
nent sample variances; and the control chart by Tang and
Barnett (1996a; hereafter referred to as the Sd chart), which
is based on decomposing S into a sequence of independent
chi-square random variables. The LR chart is chosen since
it is capable of detecting general changes in the covariance
matrix and is the basis for a number of other existing charts,
including the proposed PLR chart. The CE chart is chosen
because it is especially effective in detecting changes that
only occur in the variance components. We did not include
another commonly used chart, the |S| chart, in our study
since it was shown in Tang and Barnett (1996b) that the |S|
chart is less effective than the Sd chart.
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3.1. The simulation settings

We assume that when the process is in control, � = Ip, and
when the process is out of control, � = �OC �= Ip is some
specified covariance matrix. We also assume that when the
covariance matrix changes from Ip to �OC, such a change
is sustained throughout the duration of the monitoring.
The sample size n was set at 50 and once a sample was
generated, it was used to evaluate all four competing charts.
Furthermore, all of the charts were calibrated to have an
in-control ARL (ARL0) value approximately equal to 200.
The dimensionality p = 5 and 10 were chosen and λ values
between 0.05 and 2 were tested. The simulation size was
10 000.

While it is almost impossible to include all possible out-
of-control scenarios in the simulation through the selection
of �OC, we tried to select a number of �OC values for which
the PLR chart is expected to be effective, as well as other
�OC values for which the existing charts are expected to
be effective. We looked at seven specific �OC values. For
p = 10 and δ = 0.01 to 0.50 (similar for p = 5), the seven
�OC values, denoted by �OC j , j = 1, 2, . . . , 7, are

�OC1 = (1 + δ) × I10 =

⎛
⎜⎜⎜⎜⎝

1 + δ

1 + δ 0

0
. . .

1 + δ

⎞
⎟⎟⎟⎟⎠

10×10

,

�OC2 =

⎛
⎜⎜⎜⎜⎜⎝

1 + δ 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

10×10

,

�OC3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 δ δ δ δ

δ 1 δ δ δ

δ δ 1 δ δ 0
δ δ δ 1 δ

δ δ δ δ 1
1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10×10

,

�OC4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ δ δ

δ 1 + δ δ 0
δ δ 1 + δ

1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10×10

,

�OC5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 δ

δ 1 0
1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

10×10

,

�OC6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ2 δ

δ 1 + δ2 0
1

0
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

10×10

,

�OC7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ δ

δ 1 + δ 0
1

. . .

0 1
1 + δ δ

δ 1 + δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10×10

.

Note that the existing charts are expected to be effective
in detecting changes such as �OC1 , and �OC2 since it in-
volves variance changes only. The �OC2 , �OC5 , and �OC6

were also considered in Hawkins and Maboudou-Tchao
(2008). The simulated out-of-control ARL (ARL1) values
for each of the �OC j values are summarized in Tables 1 to
7. Here we only report the λ value that resulted in the best
performing PLR chart for each of the �OC j values consid-
ered. For a detailed account of the simulation results not
shown here, please contact the second author.

3.2. Discussion of simulation results

As indicated by the simulated ARL1 values summarized in
Table 1, the CE chart has the best performance among the
existing charts since it is designed to detect changes in the
variance components. However, the PLR chart performs
as well as the CE chart when a large tuning parameter was
chosen. This forces more off-diagonal elements to zero and
thus makes the PLR chart more sensitive to changes in
variance components. For �OC2 (Table 2), this is an out-of-
control covariance matrix that is difficult to detect (more
so for p = 10 than for p = 5). Among the existing charts,
the CE chart and the Sd chart are more effective than the
very ineffective LR chart, with the CE chart outperforming
the Sd chart for smaller δ values (δ ≤ 0.20) and the Sd chart
outperforming the CE chart for larger δ values. The PLR
chart, on the other hand, outperforms the existing charts,
especially for smaller δ values.

For �OC3 (Table 3), the LR chart is expected to be more
effective than the CE chart and the Sd chart since only
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Table 1. The simulated ARL1 values for �OC1

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 1.8) LR chart CE chart Sd chart (λ = 2.0)

0.05 166.28 44.38 101.86 43.93 169.52 26.75 88.10 26.59
0.10 99.36 14.14 43.50 14.06 106.05 6.66 30.48 6.62
0.15 50.00 6.04 19.20 5.99 54.66 2.74 11.16 2.72
0.20 24.61 3.18 9.24 3.14 26.01 1.58 4.75 1.57
0.25 12.78 2.05 4.99 2.02 12.62 1.20 2.52 1.19
0.30 7.07 1.53 3.13 1.52 6.49 1.06 1.66 1.06
0.35 4.28 1.27 2.16 1.26 3.68 1.02 1.27 1.02
0.40 2.84 1.14 1.63 1.13 2.37 1.00 1.11 1.00
0.45 2.05 1.06 1.36 1.06 1.70 1.00 1.04 1.00
0.50 1.63 1.03 1.20 1.03 1.35 1.00 1.01 1.00

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.

the covariances change. The results summarized in Table 3
seem to confirm this expectation. The PLR chart slightly
outperforms the LR chart, especially for p = 10 compared
with p = 5. The choice of smaller λ value is expected since
there are many non-zero entries in �OC3 . As for �OC4 (Table
4), which is similar to �OC3 but with added changes in the
variance components, the changes in variances are likely
to make the CE chart more effective. As can be seen in
Table 4, the CE chart outperforms the other two existing
charts, except when δ ≥ 0.20 and p = 10 where the Sd chart
outperforms the CE chart. Again, the proposed PLR chart
outperforms all the existing charts in detecting �OC4 , except
when δ ≥ 0.25 and p = 10, where the Sd chart performs
slightly better.

For �OC5 (Table 5), which is similar to �OC3 , this is gen-
erally difficult for a control chart to detect (more so for
p = 10 than for p = 5 and for �OC5 than for �OC3 ). Note
that for p = 5, the �OC5 = �OC3 . Similar to the results
summarized in Table 3, the PLR chart outperforms the
best performing existing chart, which is the LR chart. As
for �OC6 (Table 6), the LR chart is most effective among
the existing charts for smaller δ values (δ ≤ 0.25), while the

Sd chart performs better for larger δ values. The PLR chart
outperforms all of the existing charts in detecting �OC6 , ex-
cept when δ ≥ 0.45 and p = 10. Nevertheless, in this case,
the performance deteriorates as p increases for all of the
charts. In detecting �OC7 (Table 7), the PLR chart outper-
forms, as expected, all of the existing charts. Among the
existing charts, the changes in variance components seem
to make the CE chart more effective for smaller δ values
(δ < 0.3), while the Sd chart is more effective for larger δ

values.
In summary, the proposed PLR chart either outperforms

or performs as well as the best performing existing chart
in all of the out-of-control scenarios examined. The PLR
chart is particularly effective when the covariance changes
occur in blocks in higher dimensions, such as �OC3 , �OC4 ,
and �OC7 , as well as when �OC has many zero entries, such
as �OC2 under p = 10. Note that we have also conducted
simulations for different sample sizes (not reported here).
Increasing the sample size generally makes any given con-
trol chart more effective. Nevertheless, the comparisons
between the proposed PLR chart and the existing charts
remain the same.

Table 2. The simulated ARL1 values for �OC2

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 1.0) LR chart CE chart Sd chart (λ = 0.8)

0.05 193.14 142.79 170.86 138.80 195.99 159.29 177.57 156.11
0.10 171.63 105.97 134.91 95.79 188.25 128.06 148.38 119.55
0.15 143.73 81.05 97.99 68.27 174.02 104.03 118.15 90.33
0.20 113.67 63.13 69.98 48.10 156.71 86.78 88.44 67.47
0.25 85.70 50.13 50.17 34.22 137.46 72.88 66.00 51.14
0.30 64.89 40.04 35.64 24.68 116.82 62.05 49.39 38.50
0.35 47.89 32.79 25.55 18.24 98.96 53.43 37.07 28.86
0.40 35.75 27.78 18.50 13.73 82.07 46.59 27.77 21.95
0.45 36.64 23.01 13.68 10.41 67.34 40.96 21.29 16.87
0.50 20.36 19.53 10.69 8.21 55.15 36.14 16.29 13.09

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.
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Table 3. The simulated ARL1 values for �OC3

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 0.05) LR chart CE chart Sd chart (λ = 0.05)

0.05 185.61 200.09 193.46 183.27 145.90 195.33 177.77 138.93
0.10 148.88 196.80 171.95 146.27 65.60 183.84 114.28 57.25
0.15 103.18 191.87 135.73 101.81 24.40 166.88 53.31 20.16
0.20 66.65 186.84 96.19 64.99 9.50 147.45 22.30 7.78
0.25 41.07 179.81 61.63 39.23 4.29 126.56 9.77 3.64
0.30 24.96 173.07 37.82 24.17 2.36 107.58 4.90 2.05
0.35 14.93 165.09 22.76 14.49 1.55 90.34 2.79 1.44
0.40 9.01 155.98 13.45 8.75 1.21 75.15 1.82 1.16
0.45 5.51 145.92 8.43 5.40 1.06 63.04 1.35 1.05
0.50 3.49 137.87 5.33 3.46 1.01 53.20 1.12 1.01

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.

As one referee pointed out, when a control chart signals,
an important follow-up question is which of the variables
is responsible for the observed out-of-control signal? Un-
fortunately, unlike the case of monitoring the multivariate
process mean, when a covariance matrix monitoring chart,
such as the proposed PLR chart, signals, it is very dif-
ficult to diagnose the root cause since there are a total of
p(p + 1)/2 parameters. Some recent papers have attempted
to provide some diagnostic guidelines and procedures (see,
for example, Yeh et al. (2006) and Chen and Hong (2010)).
Under the premise of the current article, the covariance
matrix is assumed to be sparse. Therefore, when the PLR
chart signals, an important first step is to estimate, based
on the sample that produces the out-of-control signal, the
covariance matrix based on the penalized likelihood esti-
mation via �λ. Comparing this estimate with the one based
on Phase I data or engineering knowledge could provide the
first clues as to which variable may have caused the chart to
signal. However, more concrete and systematic diagnostic
procedures is an area for future investigations.

The types of changes in the variance components con-
sidered in the current article focus on detecting process

deterioration, which is a major concern in quality con-
trol. However, as suggested by one referee, we also studied
the performance of the PLR chart when δ < 0, which in-
dicates a decrease in the variance components with the
implication that the process may actually improve. For
each of the seven �OC j causes considered, we plotted the
ARL1 value against the values of δ. In terms of the overall
trend of these ARL1 curves, they can be classified into
three groups, one group consisting of �OC1 and �OC2 ;
one group consisting of �OC3 , �OC5 , and �OC6 ; and the
third group consisting of �OC4 and �OC7 . Here we show in
Fig. 3 only �OC2 , �OC3 , and �OC4 from each of the three
groups.

For �OC2 (as well as �OC1 ), which only incurs changes
in variance, the PLR chart is clearly not effective in de-
tecting the decreases in the variances. For �OC3 (as well
as �OC5 and �OC6 ), which only incurs changes in the co-
variance components, the ARL1 curve is highly symmetric,
indicating that the PLR chart is equally effective in detect-
ing changes in the covariance in both directions. As for
�OC4 (as well as �OC7 ), which incurs changes in both vari-
ance and covariance components, the ARL1 curve presents

Table 4. The simulated ARL1 values for �OC4

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 1.0) LR chart CE chart Sd chart (λ = 1.6)

0.5 193.14 142.79 170.86 138.80 174.78 100.70 143.26 98.51
0.10 171.63 105.97 134.91 97.59 118.02 55.69 78.90 51.17
0.15 143.73 81.05 97.99 68.27 67.14 33.51 39.11 28.50
0.20 113.67 63.13 69.98 48.10 37.09 21.47 18.58 16.73
0.25 85.70 50.13 50.17 34.22 20.37 14.26 9.74 10.20
0.30 64.89 40.04 35.64 24.68 12.03 10.04 5.87 6.70
0.35 47.89 32.79 25.55 18.24 7.46 7.40 3.81 4.66
0.40 35.75 27.78 18.50 13.73 4.98 5.67 2.74 3.49
0.45 26.63 23.01 13.68 10.41 3.57 4.45 2.10 2.72
0.50 20.36 19.53 10.59 8.21 2.71 3.63 1.71 2.21

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.
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Fig. 3. The ARL1 curves: (a) � = �OC2 ; (b) � = �OC3 ; and (c) � = �OC4 .

mixed results. On one hand, a decrease in variance drives
up the ARL1, while on the other hand, a change in the
covariance component decreases the ARL1.

3.3. Selection of λ

The choice of λ for the PLR chart, similar to choosing the
smoothing constant for an EWMA chart, depends on the
change patterns and shift magnitudes. We have simulated
the ARL1 values as a function of δ for different values
of λ = 0.05, 0.10, 0.20, 1.0, 1.8 for �OC1 , �OC2 , �OC3 , and
�OC6 . The results are shown in Fig. 4 (using log(ARL1) as
the y-axis). Note that for the other OC covariance matrices,
the patterns for �OC4 and �OC7 are similar to that of �OC2 ,
while the pattern for �OC5 is similar to that of �OC3 .

The ARL1 curves for �OC1 , �OC2 , and �OC6 are basically
convex and the ARL1 generally decreases at a reasonable
rate as δ increases. In addition, larger λ values seem to
produce better results for �OC1 , while for �OC2 a moderate
λ value of 1.0 seems to produce the best results. As for
�OC6 , a smaller value of λ = 0.1 seems to give better results.

Note that in all these OC cases, �OC1 , �OC2 (as well as
�OC4 and �OC7 ), and �OC6 , the variances increase when δ

increases. These OC scenarios are of greater concern since
they generally represent process quality deterioration (as
characterized by variance increases).

The ARL1 curve for �OC3 (as well as �OC5 , which is not
shown here) is quite different in that the λ value needs to be
more carefully chosen. This is because some of the choices
actually produce concave ARL1 curves that decrease at a
much slower rate as δ increases. The graph seems to indicate
that smaller λ values are preferable since they result in
convex ARL1 curves. Also note that �OC3 and �OC5 are
the only two out-of-control scenarios in which only the
covariances increase as δ increases, but the variances remain
unchanged.

The results shown in Fig. 4 suggest that the choice of
λ largely depends on the change patterns. It is therefore
difficult to recommend one λ value that works well for
all out-of-control scenarios. This also reaffirms the impor-
tance of failure pattern analysis in practical control chart
applications for practitioners.
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Table 5. The simulated ARL1 values for �OC5

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 0.5) LR chart CE chart Sd chart (λ = 0.1)

0.05 185.61 200.09 193.46 183.27 194.56 200.88 197.43 191.97
0.10 148.88 196.80 171.95 146.27 174.89 199.44 187.17 170.83
0.15 103.18 191.87 135.73 101.81 148.27 196.50 171.33 141.56
0.20 66.65 186.84 96.19 64.99 116.90 193.94 145.66 109.03
0.25 41.07 179.81 61.63 39.73 87.27 190.16 113.41 79.43
0.30 24.96 173.07 37.82 24.17 62.77 186.33 82.14 55.43
0.35 14.93 165.09 22.76 14.49 43.08 181.14 54.54 37.38
0.40 9.01 155.98 13.45 8.75 29.09 176.26 34.69 24.37
0.45 5.51 145.92 8.43 5.40 18.97 170.59 21.75 15.97
0.50 3.49 137.87 5.33 3.46 12.36 164.73 13.11 10.37

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.

4. A real example

In this section, we use a data set taken from the lapping
process in semiconductor manufacturing to illustrate the
real application of the proposed PLR chart and compare it
with the existing charts discussed in previous sections.

It usually takes many steps to produce a wafer for elec-
tronic device fabrication. Starting from a single silicon in-
got, wafers go through the processes of slicing, lapping,
washing, chemical vapor deposition, polishing, etc., before
the final products are packaged and shipped to downstream
device manufacturers. Among these steps, lapping is a crit-
ical step in that it impacts the final wafer quality. Imme-
diately following the slicing that cuts an ingot into wafers,
the lapping stage is responsible for removing surface rough-
ness and damage left by the slicing wire, controlling wafer
tilt, and reducing thickness to customer specifications (see
Chapter 3 of O’Mara et al. (2007)).

Values of the following quality variables, Total Thick-
ness Variation (TTV), Total Indicator Reading (TIR), Site

TIR (STIR), Bow, and Warp, are the major focus in wafer
production. Variable values falling outside the specifica-
tion limits will affect the yield of downstream device pro-
ductions. Therefore, these variables are carefully monitored
and controlled in production runs. Specifically, TTV mea-
sures the difference between the maximum and minimum
thickness values of a wafer, TIR measures the minimum
distance of two lines that are parallel to a reference plane
while encompassing the complete curve of thickness, STIR
is the TIR within a small region, Warp measures the differ-
ence between the maximum and minimum distances of the
median surface from a reference plane, and Bow measures
the deviation of the center point of the median surface to a
reference plane. Figure 5 gives graphical depictions of the
definitions of these variables.

From the physical definitions of these variables, TTV,
TIR, and STIR measure different aspects of the thickness
uniformity of a wafer, whereas Bow and Warp measure the
global curvature of a wafer. Figure 6 shows scatterplots of
the five variables. For a normal wafer (see Fig. 6(a)), there

Table 6. The simulated ARL1 values for �OC6

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 0.1) LR chart CE chart Sd chart (λ = 0.1)

0.05 185.44 192.27 191.71 181.82 194.61 196.00 196.04 190.87
0.10 148.68 170.53 163.01 141.05 174.88 180.96 181.41 165.89
0.15 103.41 142.06 119.76 95.20 148.27 159.63 156.51 132.50
0.20 66.25 112.27 77.59 57.84 117.55 134.56 123.08 97.14
0.25 40.99 84.60 44.54 34.37 88.57 109.85 86.40 67.89
0.30 25.36 60.87 25.45 20.25 64.15 87.84 54.48 45.13
0.35 15.94 43.61 14.38 12.33 45.19 67.23 32.49 29.98
0.40 10.24 30.22 8.92 7.91 31.88 50.93 19.70 19.62
0.45 6.89 21.19 5.81 5.37 22.29 38.67 12.16 13.21
0.50 4.85 14.68 3.99 3.84 15.67 29.20 7.88 9.05

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.
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Table 7. The simulated ARL1 values for �OC7

p = 5 p = 10

PLR chart PLR chart
δ LR chart CE chart Sd chart (λ = 1.0) LR chart CE chart Sd chart (λ = 1.6)

0.05 186.35 104.49 152.52 101.56 176.15 82.05 135.61 79.62
0.10 150.84 60.22 101.35 54.30 121.66 39.35 71.14 35.76
0.15 106.65 36.40 61.61 30.04 71.79 20.89 33.58 17.89
0.20 70.72 23.78 37.36 17.89 39.55 12.10 16.09 9.64
0.25 45.83 16.12 23.13 11.22 21.86 7.70 8.40 5.72
0.30 29.65 11.54 14.51 7.41 12.53 5.28 4.87 3.81
0.35 19.68 8.56 9.69 5.30 7.59 3.84 3.15 2.73
0.40 13.35 6.58 6.77 3.89 4.93 2.95 2.23 2.08
0.45 9.27 5.19 4.90 2.48 3.42 2.27 1.73 1.69
0.50 6.64 4.24 3.71 2.39 2.53 1.99 1.44 1.44

Note. Numbers in bold represent cases where the proposed PLR-chart is the best performing control chart; i.e., the chart with the smallest ARL.

are moderate correlations between TTV, TIR, and STIR
and a weak correlation between Bow and Warp. Based on
the physical understanding of these variables, it is also rea-
sonable to conclude that there is no direct linkage between

these two groups of variables. Figure 6(b) shows one possi-
ble scenario of process changes. It is seen that correlations
among variables within each group increase significantly,
whereas the correlations between the variables of the two

Fig. 4. The ARL1 curves under different λ values: (a) � = �OC1 ; (b) � = �OC2 ; (c) � = �OC3 ; and (d) � = �OC4 .
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Fig. 5. Definitions of critical wafer quality variables.

the groups remain relatively unchanged. Due to data con-
fidentiality, we have removed the actual scales from all of
the figures shown in Fig. 6.

In order to obtain estimates of the in-control and out-
of-control covariance matrices, we need to collect samples
under both in-control and out-of-control processes. In Stas-

Fig. 6. Scatter plots of wafer quality variables: (a) a normal sample
and (b) an out-of-control sample.

tical Process Control (SPC) applications, Phase I analysis
is required to identify samples that are collected when the
process is in control (and when the process is out of con-
trol). As mentioned earlier, the focus of the current article
is on Phase II monitoring. Although the SPC methodolo-
gies can help distinguish the in-control and out-of-control
processes, the final conclusion about the process status has
to be determined in conjunction with engineering knowl-
edge. Therefore, in this example, we collected real data,
investigated this data set using statistical methods, and dis-
cussed the results with the engineers at the plant. Statistical
tools were used to analyze failure patterns in the data set.
Furthermore, we identified one data set that the engineers
believed was normal and one dataset that the engineers be-
lieved was collected when the process was in an abnormal
state.

The in-control covariance matrix was estimated by
the penalized likelihood estimation from the observations
shown in Fig. 6(a), after some data manipulation in order
to mask the actual scales of the observations in order to
maintain data confidentiality. The matrix thus obtained is
equal to

�0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.30 0.46 0.51 0 0
0.46 1.30 0.53 0 0
0.51 0.53 1.30 0 0

0 0 0 1.30 0
0 0 0 0 1.30

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The out-of-control covariance matrix was estimated in a
similar way from the observations shown in Fig. 6(b) and
is equal to

�OC =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.30 0.62 0.63 0 0
0.62 1.30 0.68 0 0
0.63 0.68 1.30 0 0

0 0 0 1.30 −0.55
0 0 0 −0.55 1.30

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To demonstrate the applications of the proposed PLR
chart and other competing charts, we assumed that the
process covariance matrix changed from �0 to �OC as
previously described. Based on this �OC, we generated 30
samples each with 50 observations that were used to con-
struct the control charts. For each observation generated,
it was first transformed by multiplying the observations
by �

−1/2
0 . The transformed observations were then used to

calculate the plotting statistics of the PLR chart (λ = 0.1)
and other existing charts shown in Fig. 7. Note that the in-
control covariance matrix of the transformed variable is just
the identity matrix, whereas the out-of-control covariance
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Fig. 7. The control charts of the wafer example: (a) the PLR chart;
(b) the LR chart; (c) the CE chart; and (d) the Sd chart.

matrix is equal to

�
−1/2
0 �OC�

−1/2
0

T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.83 −0.03 0.02 0 0
−0.03 0.81 0 0 0
0.02 0 1.13 0 0

0 0 0 1.00 −0.43
0 0 0 −0.43 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is seen from Fig. 7 that the proposed PLR chart (Fig.
7(a)) identifies six out-of-control signals and the first out-
of-control signal shows up at sample 1. The LR chart (Fig.
7(b)) identifies four out-of-control signals with the first sig-
nal showing up at sample 8. The Sd chart (Fig. 7(d)) also
identifies four out-of-control signals with the first signal
showing up at sample 5. The CE chart (Fig. 7(c)), however,
does not show any out-of-control signals.

In the performance evaluation, we simply assumed that
�0 = Ip. In the real example, we first transformed the
observations to obtain an identity covariance matrix by
multiplying each observation by �

−1/2
0 . As pointed out by

one referee, the ARL1 performance of the PLR chart will
depend on the type of standardization used since the L1-
norm is not affine invariant. Such a dependency of the
chart performance on the type of standardization used can
also be seen in the existing literature on multivariate con-
trol charts. For example, the ARL1 performance of the
regression-adjusted control chart for monitoring the pro-
cess mean (Hawkins, 1991) also depends on the type of stan-
dardization used. The author suggested that the original p
variables be ordered in such a way that more important
variables appear before less important variables.

In many real applications, there is some existing knowl-
edge of how the variables are ordered. In the example just
analyzed, we assumed that there is a partition of the vari-
ables of interest such that variables between different sets
might be uncorrelated and variables within a set are thought
to be correlated, for both the in-control and out-of-control
cases. We ordered the variables in such a way that variables
in the same set were placed consecutively. Therefore, our
assumption led to the same block-wise sparsity pattern for
both the in-control and out-of-control covariance matri-
ces. We then applied the L1 penalty to adaptively find the
sparsity pattern in the covariance matrix.

5. Conclusions and discussion

We have proposed and studied a new Phase II control chart,
the PLR chart, for monitoring changes in the covariance
matrix of a multivariate normal process. The PLR chart was
developed under the premise that in practice changes to a
covariance matrix usually take place in fewer elements or
in smaller blocks of elements. The construction of the PLR
chart was based on two steps. First, a penalized likelihood
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function (the L1 penalty function was used in the current
article) was used to obtain an estimate of the inverse of the
covariance matrix. Such an estimate was then substituted,
in step 2, into the calculation of the negative log-likelihood
ratio for testing H0 : � = Ipversus H1 : � �= Ip.

The performance of the proposed PLR chart was evalu-
ated based on simulations and compared to that of several
existing charts. The simulation results demonstrated that
the PLR chart outperformed the existing charts for almost
all of the out-of-control scenarios considered in the cur-
rent article. In cases where some of the existing charts were
specifically designed to be effective, the PLR chart was as
effective as the best performing existing chart. These results
seem to indicate that the overall performance of the PLR
chart is very attractive, thus making it an appealing new
control charting methodology for monitoring multivariate
process variability. A real example from the semi-conductor
industry concerning the lapping process was presented and
analyzed using the PLR chart and several existing charts.
The PLR chart seems to return favorable results. In the
current article, we suggested using �

−1/2
0 to standardize

the original observations and the simulations demonstrated
that the PLR chart outperformed a number of representa-
tive Shewhart charts for the out-of-control scenarios con-
sidered in our study. However, we did not investigate as
to whether other types of standardization will have better
or worse ARL1 performance than using �

−1/2
0 . Such an

investigation will be worthwhile to pursue.
As mentioned earlier, the PLR chart is a Shewhart chart.

Nevertheless, from a methodological standpoint, it is rather
straightforward to derive CUSUM and EWMA statistics
based on �λ. It would be interesting to study the CUSUM
and EWMA extensions of the PLR chart and, more impor-
tant, to examine whether such extensions result in better
chart performance than the existing CUSUM and EWMA
charts in monitoring the covariance matrix.

The PLR chart is derived from a penalized likelihood
function. We believe that the use of a penalty function
provides a novel way to integrate engineering or domain
knowledge into developing new and possibly improved SPC
methodologies. Research efforts directed along this line de-
serve attention in the future. Here we briefly discuss one
such possibility.

Recently, several authors (e.g., Zhang et al. (2009)),
have studied the problem of simultaneously monitoring the
mean vector and covariance matrix on a single chart based
on the GLR of testing H0 : μ = μ0, � = �0 versus H1 :
μ �= μ0 or � �= �0. In practice, changes in both μ and �

happen in only in a few elements. Wang and Jiang (2009)
and Zou and Qiu (2009) have studied penalized likelihood
function–based control charts for monitoring the mean vec-
tor. Naturally, the question arises as to whether, in the
context of simultaneous monitoring, one can obtain more
efficient estimates of μ and � (or �−1) by simultaneously
penalizing μ and � in the likelihood function for estimating

μ and � (with two separate tuning parameters) and derive
new control charts for simultaneously monitoring μ and �

based on the estimates thus obtained. Note that simulta-
neously penalizing the mean vector and covariance matrix
has been studied in the context of regression analysis; see,
for example, Witten and Tibshirani (2009) and Rothman
et al. (2010). This is a direction worth for this studying and
we are currently conducting a follow-up study along this
line.
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