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Excessive variation in a manufacturing process is one of the major causes of a high defect rate and poor
product quality. Therefore, quick detection of changes, especially increases in process variability, is essential
for quality control. In modern manufacturing environments, most of the quality characteristics that have to be
closely monitored are multivariate by the nature of the applications. In these multivariate settings, the
monitoring of process variability is considerably more difficult than monitoring a univariate variance,
especially if the manufacturing environment only allows for the collection of individual observations. Some
recent charts, such as the MaxMEWMYV chart, the MEWMS chart and the MEWMC chart, have been
proposed to monitor process variability specifically when the subgroup size is equal to 1. However, these
methods do not take into account the engineering and operational understanding of how the process works.
That is, when the process variability goes out of control, it is often the case that changes only occur in a small
number of elements of the covariance matrix or the precision matrix. In this work, we propose a control
charting mechanism that enhances the existing methods via penalised likelihood estimation of the precision
matrix when only individual observations are available for monitoring the process variability. The average run
length of the proposed chart is compared with that of the MaxMEWMYV, MEWMS and MEWMC charts.
A real example is also presented in which the proposed chart and the existing charts are applied and
compared.

Keywords: control charts; quality control; covariance matrix; penalty function; likelihood ratio test; penalised
likelihood function; phase II monitoring; sparsity

1. Introduction

Excessive variation in a manufacturing process is one of the major causes of a high defect rate and poor quality of
manufactured products. For example, in a wafer fabrication process, changes in variation are usually caused by
changes of raw materials, deterioration of key equipment, incorrect settings of process parameters, etc. Such root
causes, if not identified and removed quickly, will inevitably have a negative impact on the final product quality and,
in turn, the process yield. In an example related to ambulatory monitoring, Hawkins and Maboudou-Tchao (2008)
noted that it was instrument change-out that caused variance/covariance components to change. In another example
related to a multistage manufacturing environment, the process variation propagated from upstream to downstream
stages, and thus had to be monitored closely for unexpected changes (Shi 2006). Therefore, the quick detection of
changes in process variation is essential for quality control.

In modern manufacturing environments, most of the quality characteristics that have to be closely monitored are
multivariate by the nature of the applications. In these multivariate settings, the monitoring of process variability is
considerably more difficult than monitoring a univariate variance. Numerous control charts for monitoring
multivariate process variability have appeared in the literature to date. Apart from the different charting statistics
these charts use, they also differ in the assumption of the subgroup size needed. Some methods assume that the
subgroup size is larger than the dimensionality of the quality characteristic to be monitored. In this case, when a
sample of observations is collected, an estimate of the process covariance matrix can be obtained and compared with
an in-control value. Earlier work by, for example, Montgomery and Wadsworth (1972) and Alt (1984), falls into this
category. Montgomery and Wadsworth (1972) proposed to monitor the determinant of the process covariance
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matrix, commonly referred to as the generalised variance, via the determinant of the sample covariance matrix,
while Alt (1984) proposed to monitor the generalised likelihood ratio (GLR) for testing the hypothesis that the
process covariance matrix is equal to a pre-specified value. Since the information collected in each sampling period is
assumed to be sufficient for estimating the covariance matrix, these methods are usually Shewhart-type control
charts that do not take into account historical observations.

In many industrial applications, the practical subgroup size is either small or even equal to one such that the
process covariance matrix cannot be estimated based on each sample alone. In these cases, it is therefore imperative
that historical observations be accumulated in a certain way in order to more effectively estimate the process
covariance matrix. The maximum multivariate exponentially weighted moving variability (MaxMEWMYV) chart of
Yeh et al. (2005), the multivariate exponentially weighted mean squared deviation (MEWMS) chart and the
multivariate exponentially weighted variance (MEWMYV) chart of Huwang et al. (2007), and the multivariate
exponentially weighted moving covariance (MEWMC) chart of Hawkins and Maboudou-Tchao (2008), all
accumulate historical observations by taking the EWMA of some statistics developed based on individual
observations (i.e. the subgroups size is one). In these multivariate EWMA charts, the EWMA smoothing of
historical observations provides a practical way to improve the estimation accuracy given the limited amount of
information available at each sampling period. It should be noted that Zhang and Chang (2008) proposed a
multivariate exponentially weighted moving deviation (MEWMD) chart for monitoring only the variance
components for individual observations. The MEWMD chart is essentially an extension of the multivariate
exponentially weighted moving average (MEWMA) chart of Lowry et al. (1992) and it is not intended to detect
changes in the covariance components.

The existing control charts for monitoring process variability, Shewhart- or EWMA-type, share one common
feature, that is they all rely on the sample covariance matrix or its EWMA version for estimating the process
covariance matrix. Such an approach, given that data are inevitably contaminated by noise, does not take into
account any knowledge of the process covariance matrix stemming from an engineering and operational
understanding of how the process works. For a simple illustration of the point just raised, let us assume that the
in-control process covariance matrix is an identity matrix, which is a common assumption of Phase™II control charts
for monitoring the process covariance matrix. Nevertheless, under such an assumption, the sample covariance
matrix or its EWMA version is likely to contain mostly non-zero off-diagonal elements even if the process
covariance remains in control. Further, in many practical applications, when process variability changes, it is often
the case that such changes are seen in only a small number of elements in the covariance matrix or the precision
matrix, which is the inverse of the covariance matrix. This implies that sample covariance matrix based control
charts are likely to contain information not pertinent to the true process variability, which, as a result, may hamper
the performance of the existing charts. More specifically, the type of process variability changes to be quickly
detected in Phase II is likely to be sparse in that only few of the off-diagonal elements of the covariance or precision
matrix will be non-zero. Therefore, the sparsity of the matrix should be incorporated into the design of control
charts for monitoring the process variability. This consideration is the main motivation behind the current study.

A sparse estimate of a covariance matrix or precision matrix is also statistically appealing. Under observational
noise, a sparse estimate is more stable (Huang et al. 2006). Recently, much work has appeared in the literature
concerning how to obtain sparse estimates of a covariance matrix (see, e.g., Rothman et al. (2008), D’Aspremont
et al. (2008) and Friedman et al. (2008)). In multivariate control chart applications, the precision matrix has
important engineering implications. If the ith row and jth column element of the precision matrix is equal to 0, it
means the ith and jth variables are conditionally independent given all other variables. In quality analysis, such
conditional independence indicates that quality deterioration of one variable should not be attributed to the other
variable, although the marginal correlation between these two variables may be quite significant. Such implications
are important to root cause diagnosis. Therefore, the sparsity of the precision matrix can be linked with engineering
knowledge and be used to improve the performance of the control charting mechanism.

Considering that the covariance structure to be monitored is likely sparse, we propose in this work a new
Phase II control chart for monitoring the process variability that takes such information into account. The proposed
chart is constructed by first accumulating individual observations through an EWMA calculation. A sparse estimate
of the precision matrix is then obtained based on the smoothed EWMA sample matrix via penalised likelihood
estimation. The estimate thus obtained is then used in a likelihood ratio test based charting static to detect changes
in the covariance matrix. It should be pointed out that, in a very recent study by Li et al. (2012), a Shewhart-type
control chart was proposed to monitor a sparse covariance matrix. However, the sample size required was much
larger than the dimensionality of the quality characteristic to be monitored.
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The rest of the paper is organised as follows. In Section 2, after briefly introducing the existing control charts, a
detailed discussion of the proposed control chart is given. Section 3 is devoted to numerical studies comparing the
chart performance of the proposed chart and the existing charts. In Section 4, the proposed chart is applied to a real
example and compared with the existing methods. Concluding remarks and a discussion of potential future research
along the same lines are given in Section 5.

2. The proposed control charting mechanism
2.1 The existing control charts

Let X denote the p-dimensional quality characteristic to be monitored and assume that X follows a p-dimensional
normal distribution denoted as N(p, X), where p and X are the mean and covariance matrix of the distribution,
respectively. When the process is in control, we assume that p =py and X =X,. Since our focus in the current paper
is on Phase II monitoring, as is the case in most literature on Phase II control charts, we assume that py and X, are
either known or can be reasonably estimated based on the data collected from Phase I control when the process was
in control. Our primary interest in the current work is developing control charts for monitoring changes in process
variability and, therefore, we further assume that when the process is out of control, the process covariance matrix
changes to Xoc#X, while the process mean remains in control and the change is sustained throughout the
monitoring operation. For recent work on multivariate control charts for monitoring the process mean, see, for
example, Gonzalez and Sanchez (2008), Hwarng (2008), Alfaro et al. (2009), Niaki and Davoodi (2009), and
Hwarng and Wang (2010).

Alt (1984) proposed a Phase II control chart for monitoring £ whose plotting statistic for the ith sample,
i=1,2,...,is the generalised likelihood ratio (GLR) for testing Hy: X=X

IS
[Xol

W; = —(m— 1)|:p+ln —tr(zols,)], )
where |A4| is the determinant of the matrix A, tr(B) is the trace of the matrix B, m is the subgroup size, p is the process
dimension, and S; is the sample covariance matrix calculated based on the ith sample.

As discussed above, the type of Shewhart chart for monitoring X which relies on S; typically assumes that m > p.
However, in the case when m =1, S, based Shewhart charts are not applicable. Huwang et al. (2007) and Hawkins
and Maboudou-Tchao (2008) both proposed to first transform the individual observation, X, into
U; = Eal/z(Xi — Iy), such that when the process is in control, U, is distributed as N(0, I,), where I, is a pxp
identity matrix. The individual U, values are then accumulated based on an EWMA calculation:

Si = (1 = @)S;-1 + wU;U], 2

where Sy=1, and 0 < w < 1 is a smoothing constant. To simplify notation, here we continue to use S; to denote the
estimate of the covariance matrix based on the EWMA calculation.

Huwang et al. (2007) use tr(S;) as the plotting statistic of the MEWMS chart. Hawkins and
Maboudou-Tchao (2008) plug S; into the GLR calculation in Equation (1) to form the charting statistic of the
MEWMC chart:

¢ = tr(Sy) — log|Si| — p. (3)
For the MaxMEWMYV chart of Yeh et al. (2005), the plotting statistic is equal to (for i=1,2,...)

4)

Dy — E(D;y) Dp — E(D;
maxD,-zmax|: it — E(Di) Dip — E( 12)]’

JVar(Dy)) ~ /Var(Dy))
where Dy — Zf:l (si(jj) — 1. D = \/25?: DY <k <ip s7(jk) and S;=[s,(jk)],xp- D1 is essentially the Euclidean

distance between the vector of p diagonal elements of S; and its in-control value, which is a vector of 1’s. Similarly,
D is the Euclidean distance between the vector of p(p — 1)/2 lower triangular off-diagonal elements of S; and its in-
control value, which is a vector of 0’s. Therefore, the changes in the covariance matrix can be reflected in either or
both of the deviations of the variance and covariance components from their in-control values.
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2.2 The LASSO-MEWMC chart

Although the EWMA accumulation of historical observations in Equation (2) is expected to result in a more stable
estimate of the process covariance matrix when only individual observations are available, the resulting S; does not
take into account any knowledge of the structure of the covariance matrix. For example, when the process is in
control, the expected value of S; is equal to I, the structure of which is basically sparse. However, the estimate S; will
likely contain mostly non-zero off-diagonal elements. Therefore, in this work, we propose to obtain a sparse estimate
of the precision matrix based on S;, and use this estimate to construct the proposed control charting mechanism.
Define Q) =X !, which is the in-control precision matrix of a process whose in-control covariance matrix is equal
to X,. Since we are dealing with U,, the transformed variables, in the EWMA context, Q) = X l—r!'=1

A~ y4 P

Following Equation (2), we define Q, as the solution to the following penalised likelihood function:
©; = argmin{tr(QS) — In || + 4|2~ 1, ). 5)
where ||All; = j.’:] 1;:1 la;| for A=[a;l,~,, and A is a data-dependent tuning parameter that can be tuned to

achieve different levels of sparsity of the resulting ;.

The added penalty term in Equation (5) is helpful in forming the desired structure in the precision matrix. Similar
penalty functions have been studied in the literature. Rothman ez al. (2008) considered a different penalty term,
Al — diag(Q)||;, which penalises all off-diagonal but ignores diagonal elements of Q. D’Aspremont et al. (2008)
and Friedman ez al. (2008) investigated the use of the penalty A||Q]|;, which penalises all elements of Q. This has the
effect of forcing all elements, including diagonal elements, to zero. However, in control chart applications, all
elements should be forced to shrink towards their respective in-control values. If all process variables are
transformed such that Xy=1,, the in-control values of the off-diagonal elements should all be zero and the
in-control values of the diagonal elements should all be one. Therefore, if used directly in control chart applications,
i.e. penalising the elements in , Rothman et al.’s (2008) penalty ignores noise in variance terms, while the penalty
used by D’Aspremont et al. (2008) and Friedman et al. (2008) inappropriately forces variance components to zero
rather than one. Instead, the penalty we propose in Equation (5) penalises the distance between the diagonal
elements and one, and the distance between off-diagonal elements and zero. Such an approach is designed to shrink
all elements towards their respective in-control values. Therefore, Equation (5) is a more suitable choice than other
forms of penalty function.

In order to detect changes in the covariance matrix, we consider the GLR for testing Hy: ¥=1,, vs. H;: X#1,,.
With the sample covariance matrix that appears in the likelihood function being replaced by S; in Equation (2), the
negative log-likelihood function under Hy is equal to, up to a constant,

Iy = tr(S)), (6)
and the negative log-likelihood under H; is equal to, up to a constant,
I = tr(QS) — In €Y, (7

where Q is the maximum likelihood estimate (m.l.e.) of X L
Conventionally, € is replaced by the inverse of the sample covariance matrix, S~!. In this work, we use the
sparse estimate, €2;, obtained from Equation (5) instead. Finally, the negative log-likelihood ratio becomes

Ay = In [9y] — tr(€4S)) + tr(S)). (8)

The above statistic becomes the smallest under the null hypothesis and increases otherwise; its value also varies with
A. Therefore, our proposed Phase II control chart is based on calculating the test statistic in (8) for each of the ith
samples, i=1,2,.... At each step, when a new observation arrives, it is first transformed into U,. S; is updated based
on Equation (2). The updated matrix is then plugged into Equation (5) to obtain a sparse estimate €;. Finally,
based on Equation (8), S; and Q, are used to calculate the charting statistic A,. The chart signals if A, exceeds a
predetermined control limit, UCL,. The choice of UCL, depends on the desirable in-control performance, the
dimensionality as well as on the tuning parameter A. Listed in Table 1 are different values of UCL;, which were
obtained based on Monte-Carlo simulation, for various tuning parameters and dimensionalities, and when the
in-control average run length (ARL) is set at 200, 370 and 500.

Since this chart is derived from a sparse estimate of Q based on a least absolute shrinkage and selection operator
(lasso) type penalty, we call this chart a Lasso-MEWMC (LMEWMC) chart. From the work of Yeh ez al. (2005),
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Table 1. Values of UCL, for different values of A, p and in-control ARL (w=0.1).

ARLy,=200 ARLy=370 ARLy=500

A p=>5 p=10 p=20 p=>5 p=10 p=20 p=>5 p=10 p=20

0.02 1.5367 4.2166 13.2953 1.6713 4.4188 13.6354 1.7334 4.5129 13.7859
0.04 1.5021 4.0267 12.2063 1.6367 42273 12.5398 1.6981 4.3220 12.6883
0.06 1.4617 3.8369 11.3082 1.5964 4.0398 11.6410 1.6577 4.1333 11.7875
0.08 1.4203 3.6592 10.5438 1.5555 3.8582 10.8752 1.6154 3.9528 11.0219
0.1 1.3789 3.4887 9.8672 1.5145 3.6930 10.2047 1.5758 3.7863 10.3500
0.2 1.1820 2.7762 7.3266 1.3234 2.9887 7.6727 1.3869 3.0871 7.8271
0.3 1.0039 2.2048 5.4736 1.1488 24172 5.8273 1.2163 2.5207 5.9906
0.4 0.8371 1.7143 3.9766 0.9849 1.9238 4.3281 1.0527 2.0281 4.4845
0.8 0.3836 0.6309 1.0846 0.5104 0.7882 1.2883 0.5696 0.8660 1.3894
1.0 0.2396 0.4107 0.6484 0.3681 0.5434 0.8137 0.4269 0.6094 0.8946
1.2 0.0625 0.2406 0.4151 0.2202 0.3808 0.5594 0.2869 0.4443 0.6276

Huwang et al. (2007) and Hawkins and Maboudou-Tchao (2008), it is clear that when estimating process variability
based on individual observations, using EWMA to smooth the sample covariance matrix calculated from each
individual observation is an effective choice against process noise. The EWMA smoothing also has the effect of
accumulating historical information for a more stable estimate. In this work, we propose to obtain a sparse estimate
of the precision matrix on the basis of the smoothed EWMA of S;. Based on the special structural information
stemming from an understanding of how the process works, we propose to penalise both off-diagonal and diagonal
elements of the matrix that is formed by taking the difference of the estimated and in-control precision matrices.
Such a treatment is expected to help improve the chart performance. In the following section, we compare the
performance of the proposed LMEWMC chart with that of the MEWMC and other charts discussed earlier for
monitoring the process covariance matrix.

3. Performance study and design guidelines
3.1 Performance of the lasso penalty

As discussed above, the penalty proposed in Equation (5) has the effect of shrinking all elements of the estimated
precision matrix towards their respective in-control values, which, under the assumption, are zero for the off-
diagonal and one for the diagonal elements. Friedman et al. (2008) introduced an algorithm that uses the L; penalty
of the absolute value of all elements in the precision matrix and provided an open-source package called GLasso.
The GLasso algorithm can also be configured to penalise only the off-diagonal elements of the precision matrix. The
algorithmic implementation of the proposed penalty in Equation (5) is a modification of the GLasso package.

We first demonstrate and compare the effects of various penalty functions on the estimation of sparse covariance
and precision matrices. A random sample of 10 observations was first generated from I, with p=35. Although the
LMEWMC chart uses an EWMA to accumulate historical observations, for demonstration, here we simply
calculate the sample covariance matrix of these 10 observations. The sample covariance matrix is then put into
Equation (5) to obtain a sparse estimate of the precision matrix. Finally, a sparse estimate of the covariance matrix
is obtained by calculating the inverse of the estimated sparse precision matrix. Different types of penalty functions
were tested and the resulting estimates are shown in Table 2, along with the corresponding un-penalised sample
covariance matrix and sample precision matrix. All diagonal elements in the covariance matrix estimate and the
precision matrix estimate are highlighted for clarity. It is evident from Table 2 that the sample covariance and
precision matrices fail to produce the sparse structure as seen in the true covariance and precision matrices.

If Friedman ez al.’s (2008) algorithm is applied to penalise all elements, most of the off-diagonal elements in the
estimated precision matrix are shrunk to zero, while some of the diagonal elements also become smaller and are
shrunk towards zero. Further, if Friedman ez al.’s (2008) algorithm is applied to penalise only the off-diagonal
elements, most of the off-diagonal elements of the estimated precision matrix are shrunk to zero, while some of the
diagonal elements are also affected and shrunk towards zero. On the other hand, the penalty proposed in Equation
(5) in the current paper tends to shrink all diagonal elements closer to one and at the same time off-diagonal
elements towards zero. This simple example indicates that the proposed penalty in Equation (5), which is slightly
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Table 2. Comparison of different types of penalties (A =0.2).

Covariance matrix Precision matrix
1 2 3 4 5 1 2 3 4 5

Sample

1 1.460 0.119 0.652 —0.169 0.140 0.875 —0.067 —0.371 0.096 —0.080

2 0.119 0.821 0.117 —0.030 0.025 —0.067 1.238 —0.067 0.017 —0.014

3 0.652 0.117 1.444 —0.167 0.138 —0.371 —0.067 0.884 0.095 —0.079

4 —0.169 —0.030 —0.167 0.843 —0.036 0.096 0.017 0.095 1.225 0.020

5 0.140 0.025 0.138 —0.036 0.830 —0.080 —0.014 —0.079 0.020 1.233
Proposed penalty

1 1.260 0 0.452 0 0 0.913 0 —0.332 0 0

2 0 1 0 0 0 0 1 0 0 0

3 0.452 0 1.244 0 0 —0.332 0 0.924 0 0

4 0 0 0 1 0 0 0 0 1 0

5 0 0 0 0 1 0 0 0 0 1
Penalising all elements

1 1.660 0 0.452 0 0 0.651 0 —0.179 0 0

2 0 1.021 0 0 0 0 0.979 0 0 0

3 0.452 0 1.644 0 0 —0.179 0 0.657 0 0

4 0 0 0 1.043 0 0 0 0 0.959 0

5 0 0 0 0 1.030 0 0 0 0 0.971
Penalising only off-diagonal elements

1 1.460 0 0.452 0 0 0.758 0 —0.237 0 0

2 0 0.821 0 0 0 0 1.218 0 0 0

3 0.452 0 1.444 0 0 —0.237 0 0.767 0 0

4 0 0 0 0.843 0 0 0 0 1.186 0

S 0 0 0 0 0.830 0 0 0 0 1.205

different from the existing penalties for estimating a sparse precision matrix, is more practical in control chart
applications in terms of producing more meaningful estimates of a sparse in-control covariance matrix.

3.2 ARL performance study and comparison
In this section we study the ARL performance of the proposed LMEWMC chart and compare it with that of the
MaxMEWMV (Yeh et al. 2005), MEWMS (Huwang et al. 2007) and MEWMC (Hawkins and Maboudou-Tchao
2008) charts. Note that these existing charts are specifically designed to detect changes in the process covariance
matrix with individual observations. Most of the other existing charts for monitoring the covariance matrix require
that m > p (or at least m > 1). Nevertheless, despite the fact that these existing charts all belong to EWMA-type
control charts, they have never been compared in the literature.

We study and compare the performance of the proposed LMEWMC chart and the three existing charts under
four different out-of-control covariance matrices, denoted as Xoc,, i=1,2,3 and 4. The four out-of-control
covariance matrices considered are

1685 6
51 5 6 8 145
55185 0 1 0
585 5 1 8 1
o= s 5 5 5 1 , Toc = I ’
! 0
0 L/ pup

XD
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18 1+8 6
s 1 0 b 1442 0
Yoc, = 1 , Zoc, = 1
0 0 .
1 pPxp 1 PXp

In Xoc,, all correlation components of the top left half corner of the covariance matrix change from 0 to 4. In Xoc,,
the only change in the covariance matrix comes from the variance of the first variable, which increases from 1 to
1 + 6. The change in Xoc, stems from increasing the correlation between the first and second variables from 0 to 8.
For Xoc,, the variances of the first and second variables both increase by 8%, while the correlation between these two
variables increases to 3.

Note that Xoc,, Xoc, and Xoc, were also considered by Hawkins and Maboudou-Tchao (2008). As noted in
their paper, Xoc, corresponds to a change of the eigenvalues from 1,1,...,1 to 8%, 1,...,1. Further, Xoc,
corresponds to a change of the eigenvalues to 1 +68, 1 —4, 1, .. ..1, while Xoc, indicates a change of the eigenvalues to
148 +6, 148> =4, 1,...,1. We considered the cases when p =5, 10, 20, and § =0.05 to 0.50. All simulations were
carried out using w =0.1 to calculate S, following Equation (2) and the simulated ARL values were calculated using
10,000 simulations.

In addition to using ARL as a performance measure, Han and Tsung (2006) proposed a relative mean index
(RMI) for evaluating the ARL performance of a control chart over a range of change magnitudes in the process
parameters. The same index was also used by Zou and Qiu (2009) and Han et al. (2010). The RMI is defined as

1< |:ARL,§ — ARL; min:|
RMI = - - = R
n ; ARLB,-.min

where ARLjs, min 1s the minimum ARL for detecting a shift magnitude equal to §; of the group of control charts to be
compared and ARLs, is the ARL under §; of the control chart for which the RMI is to be calculated. The relative
mean index is the sum over all shift magnitudes divided by the total number of shift magnitudes considered. If the
RMI of a given control chart is close to 0, it is an indication that the control chart performs relatively better in
general than other charts over a range of change magnitudes. The simulation results are summarised in Tables 3—6
for Xoc,, Xoc,, Zoc, and Xoc,, respectively.

Table 3 summarises the ARL values of the competing charts under Xoc, whose changes from X, occur in the
upper left half of the matrix. When p =5, the MEWMC and LMEWMC (A =0.02) charts have practically the same
best performance, while the MaxMEWMYV chart comes in second. The poor performance of the MEWMS chart
indicates that the trace of S; is not effective in detecting change patterns under Xoc,. When p increases to 10, the
MEWMC and LMEWMC (A =0.1, 0.2) charts still give practically the same best performance. All four charts
improve when p increases. If p increases further to 20, the proposed LMEWMC chart with A =0.4 has the best
overall performance in terms of having the lowest RMI. It is interesting to point out that when p =20, the
MaxMEWMYV chart actually has a better overall performance than the MEWMC chart, with the former being
better for larger § values (§ >0.25). The LMEWMC chart also outperforms the MEWMC chart for 0.15<§<0.5.
All the charts considered utilise the same EWMA equation in accumulating historical observations by calculating S;;
however, the added penalty gives the LMEWMC chart more flexibility. In general, the LMEWMC chart is quite
appealing for detecting Xoc, . Since the covariance matrix, and by extension the precision matrix, is sparse, the use of
a lasso-type penalty forces small estimates of the off-diagonal elements to zero and, thus, makes possible changes in
the upper left block more prominent. Such an advantage appears to be more profound when the dimensionality of
the quality characteristic becomes larger. The performance of the LMEWMC chart depends on p as well as the
tuning parameter A. Under Xoc,, we plot in Figure 1(a) the RMI value as a function of the A value for p =35, 10, 20.
The graph indicates that, as far as using the LMEWMC chart to detect the change pattern in Xoc, is concerned,
setting A =0.3 seems to produce a small RMI value for the various p values considered.

The ARL values for detecting Xoc,, which has a change only in the variance of the first variable, are summarised
in Table 4. When p=35, the proposed LMEWMC (A=1.0) chart has the best overall performance. The
MaxMEWMYV chart comes in second, while the MEWMS chart comes in third. It is worth pointing out that, as far
as detecting X, is concerned, the MEWMC chart has the poorest performance among the four competing charts.
The same performance pattern holds for p=10 and p=20. Figure 1(b) indicates that, by choosing
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Table 3. ARL comparison for Xoc, (w=0.1).

LMEWMC (1)

p & MEWMS MEWMC max D; 0.02 0.04 006 0.08 0.1 0.2 0.3 0.4 0.8 1 1.2

5 0.00 200.9 200.3 199.3 1993 2004 200.3 2004 199.8 200.5 200.7 199.8 200.5 200.5 200.8
5 0.05 200.4 196.7 196.8 1957 196.4 196.7 197.2 198.0 196.6 199.0 197.1 199.2 199.4 200.8
5 0.10 198.6 184.0 191.5 1835 184.7 184.8 1856 186.4 1859 187.7 188.1 1957 198.6 200.5
5 0.15 1949 168.0 182.0 167.1 167.4 168.8 169.9 169.8 170.6 172.6 173.4 1884 196.0 199.7
5 020 1909 148.1 167.1 147.5 147.6 148.0 149.1 150.0 151.0 152.5 156.4 179.2 191.6 198.0
5 0.25 1859 128.6 152.7 1283 127.6 1283 129.1 130.0 131.7 134.1 1362 1662 185.0 195.9
5 030 1819 109.2 1379 1093 1094 109.8 110.6 111.5 113.5 1159 1182 150.3 176.0 190.8
5035 177.4 91.6 122.5 91.8 923 932 937 942 96.1 989 101.3 133.6 162.7 184.6
5 040 171.7 76.4 107.6 76.6 773 778 783 79.1 812 833 859 117.3 1469 1757
5 045 1658 64.7 94.3 649 653 660 666 669 687 71.0 73.0 100.6 131.3 161.3
5 050 157.7 54.8 82.9 550 555 559 565 569 58.6 602 619 855 1145 1454
RMI 0.73 0.00 024  0.00 0.01 0.01 0.02 002 004 006 008 032 055 0.74
10 0.00 200.2 199.8 200.5 199.8 199.8 199.5 200.6 200.1 199.1 199.8 199.2 200.2 199.7 199.9
10 0.05 197.3 181.2 191.6 181.8 182.0 1824 182.8 181.7 180.7 183.8 184.7 1924 196.8 198.5

10 0.10 190.2 144.7 165.8 1455 1448 145.0 1454 1449 1454 1473 1494 1724 186.0 1949
10 0.15 177.4 107.6 1304 108.1 107.3 107.6 108.0 107.7 107.8 109.5 111.8 1464 171.0 189.6

10 0.20 163.2 78.4 98.3 78.5 786 785 79.0 787 79.1 80.5 829 1192 151.7 180.3
10 0.25 147.8 59.5 72.5 594 595 595 596 596 598 604 624 959 130.5 1659
10 030 132.1 46.7 554  46.6 463 465 466 465 46.6 473 485 76.7 1089 148.7
10 0.35 117.7 38.3 43.6 380 378 376 375 375 376 379 390 628 90.6 130.4
10 0.40 104.4 32.0 355 31.8 317 31.6 316 315 314 315 324 519 759 1120
10 0.45 92.7 27.6 29.9 273 272 271 270 269 267 268 275 43.6 643 952
10 0.50 81.6 243 25.7 241 239 237 236 234 232 234 240 375 551 815
RMI 1.49 0.01 0.16 0.01 001 0.01 0.01 0.00 0.00 0.01 004 050 1.01 1.66
20 0.00  200.8 200.1 200.4  199.1 200.0 200.5 199.8 199.3 200.7 199.1 199.6 200.9 200.5 199.9
20 0.05 1955 167.5 1844 169.0 170.0 1714 172.6 1722 1722 173.7 1742 1848 191.3 1955
20 0.10 177.4 118.6 140.6 117.2 119.0 119.7 1203 120.2 121.6 121.8 120.2 147.7 1679 186.5
20 0.15 1532 80.6 91.6 790 791 794 8.1 80.1 79.8 780 773 107.7 138.0 169.0
20 0.20 130.2 59.5 61.5 578 576 57.6 578 577 57.0 551 544 774 108.8 149.0
20 0.25 107.5 46.9 43.7 453 449 447 448 445 429 412 402 590 844 1251
20 0.30 88.7 39.0 333 374 368 365 363 361 346 328 319 466 678 103.0
20 0.35 73.2 339 26.8 323 317 313 310 307 289 273 265 38.0 56.1 853
20 0.40 61.4 30.2 22.5 28.6 279 274 27.0 267 250 235 228 321 472 714
20 0.45 52.1 27.3 19.4 259 251 246 243 239 221 207 200 28.0 402 614
20 0.50 44.2 25.2 17.1 238 229 223 219 215 198 186 180 250 355 533
RMI 1.33 0.20 0.08 0.16 0.14 0.14 0.13 0.12 0.08 0.04 0.02 039 0.8 1.67

A=1.2, the LMEWMC chart has the best overall RMI performance in detecting Xoc, for the various p values
considered.

Table 5 summarises the comparison results under Xoc,, which has changes occurring only in the correlation
between the first and second variables. The MEWMC chart has the best overall performance, although the
LMEWMC chart has practically the same overall performance in terms of the RMI value. The MaxMEWMY chart
comes in second, while the MEWMS chart has the poorest overall performance. Figure 1(c) suggests that setting
A =0.02 when constructing the LMEWMC chart will produce small overall RMI values for the dimensionalities
considered. For detecting Xoc,, which has changes in the variance of the first variable and the correlation between
the first and second variables, the simulation results are summarised in Table 6. The results suggest that the
proposed LMEWMC chart has the best overall performance among the four competing charts. The MaxMEWMV
chart has slightly better overall performance than the MEWMC chart in terms of the RMI value for p =10 and 20.
The MEWMS chart, on the other hand, is relatively ineffective in detecting Xoc,. Figure 1(d) suggests that, as far as
detecting the change pattern in Xoc, is concerned, the LMEWMC chart with A=0.4 gives the best overall
performance for the p values considered.
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Table 4. ARL comparison for Xoc, (w=0.1).

LMEWMC (1)

p & MEWMS MEWMC max D; 0.02 0.04 006 0.08 0.1 0.2 0.3 0.4 0.8 1 1.2

5 0.00 200.9 200.3 199.3 1993 2004 200.3 2004 199.8 200.5 200.7 199.8 200.5 200.5 200.8
5 0.05 181.4 189.9 181.3 188.6 187.3 186.4 186.7 186.1 184.1 182.6 182.6 181.8 181.5 183.0
5 0.10 163.1 177.8 161.0 1763 174.0 173.0 1722 171.7 167.5 1655 163.6 161.8 161.3 162.8
5 0.15 1459 163.1 142.0 161.7 160.1 158.7 157.7 156.8 151.3 148.8 146.8 1423 142.0 143.1
5 020 130.5 150.0 1249 148.4 146.5 1444 143.1 141.7 1363 1340 131.4 123.7 1234 1245
5025 1159 137.2 109.3 1358 133.6 131.3 1294 128.1 1234 120.0 116.5 107.0 107.4 108.2
5 030 104.7 124.9 959 123.6 121.0 1194 117.0 1157 109.6 106.6 104.0 939 93.0 939
5 035 94.7 113.0 84.7 1114 109.3 107.1 1057 1039 98.0 953 927 81.7 810 &l4
5 0.40 85.8 102.5 744 100.6 98.1 963 949 93,6 8.2 8.6 8.7 T71.7 708 T1.2
5 045 71.9 924 66.0 912 8.0 87.0 854 841 793 773 739 634 623 623
5 0.50 70.7 83.9 59.2 825 803 782 768 759 720 69.6 665 563 553 554
RMI 0.12 0.30 0.03 028 026 024 022 021 0.16 0.13 0.10 0.01 0.00 0.01
10 0.00 200.2 199.8 200.5 199.8 199.8 199.5 200.6 200.1 199.1 199.8 199.2 200.2 199.7 199.9
10 0.05 190.0 195.5 186.5 1938 193.0 192.3 1923 190.3 186.7 187.4 188.0 187.5 188.0 187.1

10 0.10 179.4 188.1 172.6  187.0 185.0 183.4 1829 1799 1754 1757 1749 173.0 173.1 172.5
10 0.15 168.9 181.2 157.0 1787 1763 173.8 171.8 169.0 1643 164.0 162.4 1584 158.2 157.9
10 0.20 156.3 172.9 142.6 170.1 166.7 163.4 161.4 159.2 153.1 152.8 1513 1442 1438 1434
10 0.25 146.0 164.3 128.2 1609 157.4 153.6 151.7 149.1 1432 141.8 1404 131.1 128.6 128.2
10 0.30 136.5 154.5 115.1 1513 147.6 1442 1422 1394 1339 132.0 1299 117.5 1141 1127
10 0.35 126.1 145.7 103.3  142.6 138.5 135.0 133.0 130.1 1248 1225 1198 1049 100.1  99.0
10 0.40 116.6 137.8 91.9 133.7 129.7 1264 1248 121.7 1157 113.8 1104 93.1 885 874
10 0.45 108.7 129.1 82.2 1255 121.3 118.0 1158 112.7 107.2 1056 101.9 833 783 774
10 0.50 100.8 121.7 733 1174 1135 1099 1073 1052 100.0 97.5 934 746 699 69.0
RMI 0.21 0.36 0.02 033 030 028 026 023 019 0.17 0.15 004 001 0.00

20 0.00  200.8 200.1 200.4  199.1 200.0 200.5 199.8 199.3 200.7 199.1 199.6 200.9 200.5 199.9
20 0.05 194.4 197.4 190.5 1953 1951 1945 193.7 192.7 1919 191.0 191.2 1929 1929 1925
20 0.10 188.2 194.5 180.7 191.3 190.4 188.7 188.1 186.3 184.0 1834 182.6 184.6 184.3 183.7
20 0.15 1825 190.9 168.7 186.2 185.2 183.0 181.3 180.1 176.5 175.6 1743 174.6 173.5 172.7
20 0.20 1753 186.7 1577 1819 179.7 176.1 1752 173.6 168.5 167.2 1652 163.7 161.3 159.7
20 0.25 168.3 181.9 145.8 1757 173.0 168.8 168.1 1659 160.3 159.2 156.8 152.7 148.7 146.8
20 0.30  160.8 177.0 133.8 1694 1654 162.2 160.9 1584 1539 1521 1494 1413 136.2 1334
20 0.35 1543 171.4 121.7  163.6 159.2 1559 153.7 151.4 1469 1451 141.6 130.8 124.0 120.3
20 0.40 147.0 166.3 109.2 1573 152.6 149.5 147.0 1447 1409 138.7 1343 119.7 112.0 107.1
20 045 1399 160.4 99.5 151.2 146.6 1435 140.8 1388 1348 132.0 1274 108.8 101.3  95.3
20 0.50 1328 154.8 89.8 1453 141.0 137.2 1348 133.0 1289 126.0 120.6 994 90.2 849
RMI 0.23 0.35 0.01 029 027 025 023 022 019 0.17 015 0.07 0.03 0.01

As mentioned above, the three existing charts for detecting changes in the process covariance matrix with
individual observations, the MaxMEWMYV, MEWMS and MEWMC charts, have never been compared in the
existing literature. Therefore, our comparison also sheds some light on how these existing methods match up with
one another. The results indicate that none of the existing charts is necessarily the best performing chart, and could
even be the worst performer for certain out-of-control covariance matrices. On the other hand, the proposed
LMEWMC chart, which is based on a lasso-type penalised likelihood estimation, is either the best performing chart
among the four competing charts (Xoc, and Xoc,), or is practically equivalent to the best performer among the
existing charts (Xoc, and Xoc,).

3.3 Optimal choice of A

It is evident from the above study that the optimal choice of A varies with the target shift patterns. We have
highlighted suggested choices for A for the shift patterns studied in the preceding section. A fixed A may not work
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Table 5. ARL comparison for Xoc, (w=0.1).

LMEWMC (1)

p & MEWMS MEWMC max D; 0.02 0.04 006 0.08 0.1 0.2 0.3 0.4 0.8 1 1.2

5 0.00 200.9 200.3 199.3 1993 2004 200.3 2004 199.8 200.5 200.7 199.8 200.5 200.5 200.8
5 0.05 200.4 196.7 196.8 1957 196.4 196.7 197.2 198.0 196.6 199.0 197.1 199.2 199.4 200.8
5 0.10 198.6 184.0 191.5 1835 184.7 184.8 1856 186.4 1859 187.7 188.1 1957 198.6 200.5
5 0.15 1949 168.0 182.0 167.1 167.4 168.8 169.9 169.8 170.6 172.6 173.4 1884 196.0 199.7
5 020 1909 148.1 167.1 147.5 147.6 148.0 149.1 150.0 151.0 152.5 156.4 179.2 191.6 198.0
5 025 1859 128.6 152.7 1283 127.6 1283 129.1 130.0 131.7 134.1 1362 1662 185.0 195.9
5 030 1819 109.2 1379 1093 1094 109.8 110.6 111.5 113.5 1159 1182 150.3 176.0 190.8
5035 177.4 91.6 122.5 91.8 923 932 937 942 96.1 989 101.3 133.6 162.7 184.6
5 040 171.7 76.4 107.6 76.6 773 778 783 79.1 812 833 859 117.3 1469 1757
5 045 1658 64.7 94.3 649 653 660 666 669 687 71.0 73.0 100.6 131.3 161.3
5 050 157.7 54.8 82.9 550 555 559 565 569 58.6 602 619 855 1145 1454
RMI 0.73 0.00 024  0.00 0.01 0.01 0.02 002 004 006 008 032 055 0.74

10 0.00 200.2 199.8 200.5 199.8 199.8 199.5 200.6 200.1 199.1 199.8 199.2 200.2 199.7 199.9
10 0.05 200.3 198.0 200.2  197.6 198.1 198.7 199.4 198.5 197.3 1983 1984 199.1 199.3 200.1
10 0.10 199.5 192.1 197.3  192.6 1925 1927 1945 193.5 1925 1943 1947 196.2 198.0 199.7
10 0.15 197.8 182.2 1939 183.6 183.8 184.2 1854 1849 183.8 187.7 188.6 192.5 196.5 1994
10 0.20 1959 171.6 188.1 171.8 172.0 1728 174.1 173.8 172.6 177.6 1783 1859 1923 198.0
10 0.25 194.5 158.4 1824 1593 159.0 159.3 160.7 159.7 160.5 1648 1663 1764 186.1 196.0
10 0.30 1924 142.8 1743 1442 1451 1458 146.6 1463 1473 151.1 153.0 1655 178.7 191.7

10 0.35 189.8 128.6 165.8 1294 131.0 131.5 1322 1319 1329 137.0 1379 1523 167.9 186.0
10 0.40 186.0 113.5 156.3 1142 1159 116.7 1179 118.0 119.0 1223 1228 136.5 1551 1772
10 0.45 182.6 99.8 147.1 101.1 1023 103.2 1044 104.6 1062 1079 107.8 120.7 140.3 1659
10 0.50 177.6 86.8 136.4 88.0 8.0 898 912 91.7 931 952 949 1058 1251 152.0
RMI 0.38 0.00 0.23 0.01 0.01 0.02 003 0.02 0.03 005 005 013 022 033

20 0.00  200.8 200.1 200.4  199.1 200.0 200.5 199.8 199.3 200.7 199.1 199.6 200.9 200.5 199.9
20 0.05 200.4 199.0 199.8 1977 199.1 199.8 199.8 198.3 199.1 198.0 199.5 200.5 200.5 199.5
20 0.10  200.9 196.2 198.5 1952 1974 1974 197.6 1963 196.8 196.7 1973 199.6 199.5 199.5
20 0.15 201.1 191.5 197.4  191.5 193.0 193.1 193.6 1928 1934 1942 1942 197.6 198.2 198.8
20 0.20  199.9 184.9 1952 1855 187.5 188.7 188.3 188.2 188.4 1903 1909 1943 196.0 197.7
20 0.25 198.2 178.1 193.0 1792 181.3 181.6 1824 181.6 1832 1843 1843 189.7 192.0 195.6
20 0.30  196.2 169.0 190.1 170.8 1728 173.5 174.6 1742 176.0 177.1 177.6 183.6 186.8 192.5
20 0.35 1945 159.7 186.1 161.5 163.2 164.1 1658 165.1 167.6 1684 167.8 173.5 1785 188.1
20 0.40 1918 149.7 182.0 1522 153.0 154.1 1559 1562 157.8 158.7 157.8 161.5 1679 180.9
20 0.45 1893 139.1 177.5 1409 1423 1438 1458 1456 147.6 148.6 1474 148.1 1553 171.3
20 0.50 186.6 127.8 172.2 129.6 131.6 133.0 134.7 1347 1379 137.7 136.6 1343 142.0 159.9
RMI 0.18 0.00 0.13 0.01 0.02 0.02 003 003 0.04 004 004 0.06 008 0.12

well for all shift patterns. Therefore, the choice of the tuning parameter A should be made with certain engineering
knowledge. Failure pattern analysis based on historical data is usually helpful in identifying potential shift patterns.

Although only a limited number of shift patterns are studied in this work, the proposed chart itself is not limited
to detecting these shifts. It is expected that the proposed chart should work well for cases whose shift patterns could
be better captured by the penalised algorithm. In such cases, the choice of A could be made based on some data-
driven method. Zou et al. (2011) proposed an extended Bayesian criterion (EBIC) to guide the choice of tuning
parameter and diagnostics. Lian (2011) suggested a BIC-type criterion for choosing the tuning parameter in
penalised covariance matrix estimation. Lian (2011) showed that his BIC is capable of consistently detecting the
sparsity pattern in Q. One can similarly adapt his criterion, choosing A that minimises EBIC or BIC.

4. A real example

In this section, we apply the proposed LMEWMC chart to a real example and compare its performance with that of
the MaxMEWMYV, MEWMS and MEWMC charts.
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Table 6. ARL comparison for Xoc, (w=0.1).

LMEWMC (1)

p & MEWMS MEWMC max D; 0.02 0.04 006 0.08 0.1 0.2 0.3 0.4 0.8 1 1.2

5 0.00 200.9 200.3 199.3 1993 2004 200.3 2004 199.8 200.5 200.7 199.8 200.5 200.5 200.8
5 0.05 198.2 196.1 1952 1952 1955 1959 196.0 196.5 1951 196.7 1956 1974 197.5 199.1
5 0.10 190.2 181.8 184.7 181.5 181.8 1819 1824 1825 1809 1824 1819 188.3 191.0 193.5
5 0.15 1785 162.2 166.7 161.6 161.1 161.1 161.5 160.8 159.3 159.7 161.2 173.2 180.6 184.7
5 020 164.4 140.8 145.6  140.0 139.1 1383 1379 137.4 1358 1359 137.0 1544 1648 172.3
5 0.25 1468 120.0 1253 1193 118.6 117.0 116.8 1164 1144 1140 1142 1333 1469 155.0
5 030 1278 101.3 105.6 1003 989 984 979 971 945 936 939 1114 1273 1374
5 035 110.6 84.9 87.6 838 827 815 80.7 803 77.7 769 766 924 107.1 1183
5 0.40 94.5 71.3 72.9 70.6 694 684 67.6 671 648 639 632 751 8.0 99.1
5 045 79.5 60.7 61.2 60.1 592 584 578 571 546 535 523 617 732 828
5 0.50 66.5 52.2 50.8 51.5 505 497 492 485 462 448 438 508 605 68.1
RMI 0.30 0.08 0.10 0.07 0.06 005 0.05 0.04 0.02 0.01 000 0.14 027 0.36

10 0.00 200.2 199.8 200.5 199.8 199.8 199.5 200.6 200.1 199.1 199.8 199.2 200.2 199.7 199.9
10 0.05 199.3 197.8 199.0 1973 197.5 198.1 198.6 197.9 1958 1974 1973 197.8 1982 198.5
10 0.10 195.7 190.1 1929 190.7 190.1 189.5 191.6 189.8 187.5 189.6 189.7 1919 193.8 1954
10 0.15 189.3 179.5 183.8 1795 1787 1787 178.6 178.0 175.1 177.6 177.7 1823 186.4 188.8
10 0.20 181.0 167.1 170.7 1663 1654 164.1 164.1 162.1 1589 160.8 161.5 168.6 174.3 180.0
10 0.25 1694 152.6 1544 151.8 1498 148.7 147.2 146.0 143.1 1433 1445 151.6 160.5 167.3
10 0.30 155.2 137.4 138.7 1359 1339 1322 131.2 129.5 1262 1263 1259 1319 1432 152.7

10 0.35 1409 122.0 121.6  120.7 118.7 116.3 115.5 113.5 109.8 109.0 107.8 111.2 1243 135.1
10 0.40 126.7 108.4 105.0 106.5 103.9 102.1 1009 992 955 945 919 93.6 1044 1177
10 0.45 112.0 94.8 88.8 929 90.7 885 875 8.8 825 80.6 774 771 87.0 98.6
10 0.50 96.9 83.5 75.3 816 793 773 761 748 T1.1 692 665 642 725 824
RMI 0.23 0.11 0.09 0.10 008 0.07 0.06 0.05 0.02 002 001 003 010 0.17
20 0.00  200.8 200.1 200.4  199.1 200.0 200.5 199.8 199.3 200.7 199.1 199.6 200.9 200.5 199.9
20 0.05 200.1 198.8 198.7 197.6 198.7 199.1 199.0 197.8 198.3 197.6 1985 199.7 199.8 199.0

20 0.10 198.4 195.2 1948  194.1 195.6 1952 1949 193.7 194.0 193.7 1941 196.7 1969 196.5
20 0.15 1948 189.8 190.2  189.0 189.7 188.9 189.2 187.0 186.7 187.5 186.4 1909 1924 192.8
20 0.20 189.3 183.3 182.5 181.1 182.0 180.4 180.5 179.1 177.6 178.6 177.1 182.8 184.6 186.9
20 0.25 1828 175.3 1714 171.8 1722 170.5 170.0 168.0 166.3 166.0 1651 169.0 173.2 1784
20 0.30 1754 165.5 159.8 161.8 1609 1589 158.0 156.2 1542 153.7 151.7 1544 158.8 166.5
20 0.35 1652 156.9 147.1 151.7 1487 146.7 146.5 1445 1419 1402 138.1 136.8 141.8 152.0
20 0.40 1535 146.6 132.8 141.1 137.1 1352 1343 133.0 129.5 128.0 124.6 119.5 1234 134.0
20 045 1416 136.7 116.9 129.7 1263 124.0 123.1 120.7 117.7 1152 111.1 101.4 1043 115.0
20 0.50  128.7 127.0 101.1 1195 1153 1129 110.8 108.5 1054 1028 984 850 87.6 975
RMI 0.18 0.14 0.07 0.11 0.10 0.09 0.08 007 0.06 005 003 0.01 003 0.08

Hawkins and Maboudou-Tchao (2008) presented a real data set from an ambulatory monitoring application.
Four physiological variables, mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP), mean of
heart rate (HR) and overall mean arterial pressure (MAP), were summarised and reported each week. Hawkins and
Maboudou-Tchao (2008) obtained estimates of the in-control mean and covariance matrix, and transformed a data
set having 24 observations into 24 independent observations each generated from a four-dimensional normal
distribution with zero mean and identity covariance matrix. The transformation was done based on the regression
adjustment method of Hawkins (1993). The four transformed variables are denoted U;, U, Us and Uy, respectively.
Specifically, U, is the standardised SBP, U, is the residual, scaled to unit standard deviation, of the regression of
DBP on SBP, Usj is the residual of the regression of HR on SBP and DBP, standardised to unit standard deviation,
and U, is the standardised residual of the regression of MAP on SBP, DBP and HR. For a more detailed account of
the data set, see Hawkins and Maboudou-Tchao (2008).

Following the treatment of Hawkins and Maboudou-Tchao (2008), here we monitor the transformed variables
Uy, Uy, Uy and U,. Similar to the settings of Hawkins and Maboudou-Tchao (2008), the four competing charts
studied in the previous sections are all set up to monitor the 24 individual observations such that the in-control ARL
value of each chart is approximately equal to 500. The resulting control charts are shown in Figure 2. As can be seen
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from the figure, except for the MEWMS chart, all the other charts trigger an out-of-control signal at sample 23. The
MEWMS chart does not even produce an out-of-control signal, leading one to further question its effectiveness in
detecting an out-of-control covariance matrix in this particular instance. The trend observed for the LMEWMC
chart is similar to the MEWMC chart. This is consistent with our analysis in the previous section that, for certain
out-of-control covariance matrices, the MEWMC and LMEWMC charts have practically the same performance.
This example also demonstrates that the proposed LMEWMC chart can be implemented in practice in very much
the same way as a conventional control chart. Hawkins and Maboudou-Tchao (2008) estimated that process
changes were introduced into the process starting from observation 6; the authors then conducted an out-of-control
analysis based on observations 6—23. For comparison, we also conducted an out-of-control analysis based on the
suspected out-of-control observations 6-23.

We first derive the sample covariance matrix, S,3, following Equation (2), using observations 6-23. The initial
value of the EWMA equation is set to U(,UGT rather than 14, as suggested by Huwang et al. (2007). Then, a sparse
estimate of the precision matrix €,5 is calculated using Equation (5),

1.543  —-0.016 0 —0.258
Oor — —0.016 0.922 —0.089  0.098
e 0 —0.089 1.716  0.071

—0.258 0.098  0.071 0.440

Further, the inverse of €3 gives an estimate of the covariance matrix,

0.720  —0.036 —0.020 0.433
—-0.036 1.129  0.070 —0.281
—0.020 0.070  0.591 —0.122
0.433 —-0.281 —0.122 2.606

-1 _
923 -

Based on fitting the regressions of each U;on Uy, Us, ..., U;_;, j=2, 3 and 4, Hawkins and Maboudou-Tchao (2008)
concluded that HR, corrected for SBP and DBP, becomes less variable, while MAP, corrected for SBP, DBP and
HR, becomes more variable.

From 9531 we obtained the same conclusions as Hawkins and Maboudou-Tchao (2008), since the variance
estimates of Us and Uy are 0.591 and 2.606, respectively. Further, we also observed that the SBP seemed to become
less variable. The correlation between U; and U, also seemed to increase, while the pairs of variables U, and U,, U,
and Ui, and U, and U; seem to remain uncorrelated.

5. Conclusions

This paper proposes a lasso-based multivariate exponentially weighted moving covariance chart, the LMEWMC
chart, for monitoring the changes in process variability with individual observations. Similar to the existing
MEWMS and MEWMC charts, historical observations are first accumulated via an EWMA calculation. Different
from the existing charts in which the process covariance matrix is estimated by the sample covariance matrix based
on the EWMA of the individual observations, a lasso-type penalty is added to the likelihood estimation of the
process precision matrix, which has the effect of forcing the estimates to shrink towards their respective in-control
values.

Simulation studies indicated that the proposed LMEWMC chart either has the best performance or performs as
good as the best performing existing chart for the types of out-of-control covariance matrices considered in the
current paper as well as by Hawkins and Maboudou-Tchao (2008). In addition, the LMEWMC chart is flexible in
that the tuning parameter A can be chosen to obtain different estimates of the process precision matrix. Some
guidelines are also provided for how to choose the tuning parameter A for different types of Xgc. If certain
engineering knowledge concerning process failure patterns is available, one can choose A that produces the best
performance under potential failure patterns.

In recent work, Wang and Jiang (2009) proposed a multivariate control chart for monitoring the process mean
vector under the assumption that when the mean shifts only a small number of components will actually shift. They
also suggested a lasso-type estimate of the process mean vector. In many practical multivariate quality control
applications, one typically encounters scenarios in which an out-of-control process is a result of either a shift in the
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process mean or a change in the process covariance matrix, or both. Therefore, simultaneous monitoring of the
mean vector and the covariance matrix is important from a practical standpoint. In another recent paper, Camci
et al. (2008) proposed a support vector machines based control chart which can be considered as a non-parametric
control chart capable of simultaneously monitoring changes in the process mean and the covariance matrix on a
single chart. It would be worthwhile studying how the lasso-type penalised likelihood estimation can be
incorporated into simultaneously estimating the mean vector and the covariance matrix, the resulting estimates of
which can then be used to construct control charts for simultaneously monitoring the process mean vector and
covariance matrix with individual observations. Further, it would also be interesting to investigate how the
performance of the lasso-type control charts matches up with that of the support vector machines based control
charts. This will be further explored in a follow-up study.
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